TY - JOUR A1 - Marelja, Zvonimir A1 - Leimkühler, Silke A1 - Missirlis, Fanis T1 - Iron sulfur and molybdenum cofactor enzymes regulate the drosophila life cycle by controlling cell metabolism JF - Frontiers in physiology N2 - Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle. KW - aldehyde oxidase KW - DNA polymerase KW - electron transport chain KW - ecdysone KW - iron regulatory protein KW - quiescent mitochondria KW - magnetoreceptor KW - mitoflashes Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00050 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Marelja, Zvonimir A1 - Leimkühler, Silke A1 - Missirlis, Fanis T1 - Iron sulfur and molybdenum cofactor enzymes regulate the Drosophila life cycle by controlling cell metabolism T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 925 KW - aldehyde oxidase KW - DNA polymerase KW - electron transport chain KW - ecdysone KW - iron regulatory protein KW - quiescent mitochondria KW - magnetoreceptor KW - mitoflashes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445670 SN - 1866-8372 IS - 925 ER - TY - THES A1 - Küçükgöze, Gökhan T1 - Purification and characterization of mouse aldehyde oxidases T1 - Aufreinigung und Charakterisierung von Maus-Aldehyd-Oxidasen N2 - Mouse aldehyde oxidases (mAOXs) have a homodimeric structure and belong to xanthine oxidase family of molybdo-flavoenzymes. In general, each dimer is characterized by three subdomains: a 20 kDa N-terminal 2x[2Fe2S] cluster containing domain, a 40 kDa central FAD-containing domain and an 85 kDa C-terminal molybdenum cofactor (Moco) containing domain. Aldehyde oxidases have a broad substrate specificity including the oxidation of different aldehydes and N-heterocyclic compounds. AOX enzymes are present in mainly all eukaryotes. Four different homologs of AOX were identified to be present with varying numbers among species and rodents like mice and rats contain the highest number of AOX isoenzymes. There are four identified homologs in mouse named mAOX1, mAOX3, mAOX2, and mAOX4. The AOX homologs in mice are expressed in a tissue-specific manner. Expression of mAOX1 and mAOX3 are almost superimposable and predominantly synthesized in liver, lung, and testis. The richest source of mAOX4 is the Harderian gland, which is found within the eye's orbit in tetrapods. Expression of mAOX2 is strictly restricted to the Bowman’s gland, the main secretory organ of the nasal mucosa. In this study, the four catalytically active mAOX enzymes were expressed in a heterologous expression system in Escherichia coli and purified in a catalytically active form. Thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results showed that all enzymes can catalyze a broad range of substrates. Generally, no major differences between mAOX1, mAOX3 and mAOX2 were identified and the substrate specificity of mAOX1, mAOX3, and mAOX2 was broader compared to that of mAOX4 since mAOX4 showed no activity with substrates like methoxy-benzaldehydes, phenanthridine, N1-methyl-nicotinamide, and cinnamaldehyde and 4-(dimethylamino)cinnamaldehyde. We investigated differences at the flavin site of the mAOX enzymes by measuring the ability of the four mAOX enzymes to oxidize NADH in the absence of oxygen. NADH was able to reduce only mAOX3. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted and it is followed by mAOX1 with a ratio of 30%. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. The amino acids Val1016, Ile1018 and Met1088 were selected as targets. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3. N2 - Mouse aldehyde oxidases (mAOXs) have a homodimeric structure and belong to xanthine oxidase family of molybdo-flavoenzymes. In general, each dimer is characterized by three subdomains: a 20 kDa N-terminal 2x[2Fe2S] cluster containing domain, a 40 kDa central FAD-containing domain and an 85 kDa C-terminal molybdenum cofactor (Moco) containing domain. Aldehyde oxidases have a broad substrate specificity including the oxidation of different aldehydes and N-heterocyclic compounds. AOX enzymes are present in mainly all eukaryotes. Four different homologs of AOX were identified to be present with varying numbers among species and rodents like mice and rats contain the highest number of AOX isoenzymes. There are four identified homologs in mouse named mAOX1, mAOX3, mAOX2, and mAOX4. The AOX homologs in mice are expressed in a tissue-specific manner. Expression of mAOX1 and mAOX3 are almost superimposable and predominantly synthesized in liver, lung, and testis. The richest source of mAOX4 is the Harderian gland, which is found within the eye's orbit in tetrapods. Expression of mAOX2 is strictly restricted to the Bowman’s gland, the main secretory organ of the nasal mucosa. In this study, the four catalytically active mAOX enzymes were expressed in a heterologous expression system in Escherichia coli and purified in a catalytically active form. Thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results showed that all enzymes can catalyze a broad range of substrates. Generally, no major differences between mAOX1, mAOX3 and mAOX2 were identified and the substrate specificity of mAOX1, mAOX3, and mAOX2 was broader compared to that of mAOX4 since mAOX4 showed no activity with substrates like methoxy-benzaldehydes, phenanthridine, N1-methyl-nicotinamide, and cinnamaldehyde and 4-(dimethylamino)cinnamaldehyde. We investigated differences at the flavin site of the mAOX enzymes by measuring the ability of the four mAOX enzymes to oxidize NADH in the absence of oxygen. NADH was able to reduce only mAOX3. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted and it is followed by mAOX1 with a ratio of 30%. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. The amino acids Val1016, Ile1018 and Met1088 were selected as targets. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3. KW - aldehyde oxidase KW - drug metabolism KW - molybdenum cofactor KW - enzyme isoforms KW - enzyme kinetics KW - Aldehyd-oxidase KW - Metabolismus von Medikamenten KW - Molybdänkofaktor KW - Isoenzyme KW - Enzymkinetik Y1 - 2019 ER - TY - JOUR A1 - Herter, Susanne A1 - McKenna, Shane M. A1 - Frazer, Andrew R. A1 - Leimkühler, Silke A1 - Carnell, Andrew J. A1 - Turner, Nicholas J. T1 - Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - The use of selected engineered galactose oxidase (GOase) variants for the oxidation of amino alcohols to aldehydes under mild conditions in aqueous systems is reported. GOase variant F-2 catalyses the regioselective oxidation of N-carbobenzyloxy (Cbz)-protected 3-amino-1,2-propanediol to the corresponding -hydroxyaldehyde which was then used in an aldolase reaction. Another variant, M3-5, was found to exhibit activity towards free and N-Cbz-protected aliphatic and aromatic amino alcohols allowing the synthesis of lactams such as 3,4-dihydronaphthalen-1(2H)-one, 2-pyrrolidone and valerolactam in one-pot tandem reactions with xanthine dehydrogenase (XDH) or aldehyde oxidase (PaoABC). KW - aldehyde oxidase KW - amino alcohols KW - cascade reactions KW - enzyme catalysis KW - lactams Y1 - 2015 U6 - https://doi.org/10.1002/cctc.201500218 SN - 1867-3880 SN - 1867-3899 VL - 7 IS - 15 SP - 2313 EP - 2317 PB - Wiley-VCH CY - Weinheim ER -