TY - JOUR A1 - Tönjes, Ralf A1 - Fiore, Carlos E. A1 - Pereira da Silva, Tiago T1 - Coherence resonance in influencer networks JF - Nature Communications N2 - Complex networks are abundant in nature and many share an important structural property: they contain a few nodes that are abnormally highly connected (hubs). Some of these hubs are called influencers because they couple strongly to the network and play fundamental dynamical and structural roles. Strikingly, despite the abundance of networks with influencers, little is known about their response to stochastic forcing. Here, for oscillatory dynamics on influencer networks, we show that subjecting influencers to an optimal intensity of noise can result in enhanced network synchronization. This new network dynamical effect, which we call coherence resonance in influencer networks, emerges from a synergy between network structure and stochasticity and is highly nonlinear, vanishing when the noise is too weak or too strong. Our results reveal that the influencer backbone can sharply increase the dynamical response in complex systems of coupled oscillators. Influencer networks include a small set of highly-connected nodes and can reach synchrony only via strong node interaction. Tonjes et al. show that introducing an optimal amount of noise enhances synchronization of such networks, which may be relevant for neuroscience or opinion dynamics applications. Y1 - 2021 U6 - https://doi.org/10.1038/s41467-020-20441-4 SN - 2041-1723 VL - 12 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Tönjes, Ralf A1 - Kori, Hiroshi T1 - Phase and frequency linear response theory for hyperbolic chaotic oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We formulate a linear phase and frequency response theory for hyperbolic flows, which generalizes phase response theory for autonomous limit cycle oscillators to hyperbolic chaotic dynamics. The theory is based on a shadowing conjecture, stating the existence of a perturbed trajectory shadowing every unperturbed trajectory on the system attractor for any small enough perturbation of arbitrary duration and a corresponding unique time isomorphism, which we identify as phase such that phase shifts between the unperturbed trajectory and its perturbed shadow are well defined. The phase sensitivity function is the solution of an adjoint linear equation and can be used to estimate the average change of phase velocity to small time dependent or independent perturbations. These changes in frequency are experimentally accessible, giving a convenient way to define and measure phase response curves for chaotic oscillators. The shadowing trajectory and the phase can be constructed explicitly in the tangent space of an unperturbed trajectory using co-variant Lyapunov vectors. It can also be used to identify the limits of the regime of linear response. Y1 - 2022 U6 - https://doi.org/10.1063/5.0064519 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 4 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Gong, Chen Chris A1 - Tönjes, Ralf A1 - Pikovsky, Arkady T1 - Coupled Möbius maps as a tool to model Kuramoto phase synchronization JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We propose Mobius maps as a tool to model synchronization phenomena in coupled phase oscillators. Not only does the map provide fast computation of phase synchronization, it also reflects the underlying group structure of the sinusoidally coupled continuous phase dynamics. We study map versions of various known continuous-time collective dynamics, such as the synchronization transition in the Kuramoto-Sakaguchi model of nonidentical oscillators, chimeras in two coupled populations of identical phase oscillators, and Kuramoto-Battogtokh chimeras on a ring, and demonstrate similarities and differences between the iterated map models and their known continuous-time counterparts. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.022206 SN - 2470-0045 SN - 2470-0053 SN - 1063-651X SN - 2470-0061 SN - 1550-2376 VL - 102 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tönjes, Ralf A1 - Pikovsky, Arkady T1 - Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study ensembles of globally coupled or forced identical phase oscillators subject to independent white Cauchy noise. We demonstrate that if the oscillators are forced in several harmonics, stationary synchronous regimes can be exactly described with a finite number of complex order parameters. The corresponding distribution of phases is a product of wrapped Cauchy distributions. For sinusoidal forcing, the Ott-Antonsen low-dimensional reduction is recovered. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.052315 SN - 2470-0045 SN - 2470-0053 VL - 102 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sebek, Michael A1 - Tönjes, Ralf A1 - Kiss, Istvan Z. T1 - Complex Rotating Waves and Long Transients in a Ring Network of Electrochemical Oscillators with Sparse Random Cross-Connections JF - Physical review letters N2 - We perform experiments and phase model simulations with a ring network of oscillatory electrochemical reactions to explore the effect of random connections and nonisochronicity of the interactions on the pattern formation. A few additional links facilitate the emergence of the fully synchronized state. With larger nonisochronicity, complex rotating waves or persistent irregular phase dynamics can derail the convergence to global synchronization. The observed long transients of irregular phase dynamics exemplify the possibility of a sudden onset of hypersynchronous behavior without any external stimulus or network reorganization. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.116.068701 SN - 0031-9007 SN - 1079-7114 VL - 116 SP - 3001 EP - 3009 PB - American Physical Society CY - College Park ER - TY - THES A1 - Tönjes, Ralf T1 - Pattern formation through synchronization in systems of nonidentical autonomous oscillators T1 - Musterbildung durch Synchronisation in Systemen nicht identischer, autonomer Oszillatoren N2 - This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators. N2 - Die vorliegende Arbeit beschäftigt sich in Theorie und Simulation mit den raum-zeitlichen Strukturen, die entstehen, wenn nicht-identische, diffusiv gekoppelte Oszillatoren synchronisieren. Wir greifen dabei auf die von Kuramoto hergeleiteten Phasengleichungen zurück. Eine entscheidene Rolle für die Musterbildung spielt die Symmetrie der Kopplung. Wir untersuchen den ordnenden Einfluss von Asymmetrie (Nichtisochronizität) in der Phasenkopplungsfunktion auf das Phasenprofil in Synchronisation und das Zusammenspiel zwischen dieser Asymmetrie und der Frequenzheterogenität im System. Die Arbeit gliedert sich in drei Hauptteile. Kapitel 2 und 3 beschäftigen sich mit den grundlegenden Gleichungen und den Bedingungen für stabile Synchronisation. Im Kapitel 4 charakterisieren wir die Phasenprofile in Synchronisation für verschiedene Spezialfälle sowie in der von uns eingeführten exponentiellen Approximation der Phasenkopplungsfunktion. Schliesslich untersuchen wir im dritten Teil (Kap.5) den Einfluss von Nichtisochronizität auf die Synchronisationsfrequenz in kontinuierlichen, oszillatorischen Reaktions-Diffusionssystemen und diskreten Netzwerken von Oszillatoren. KW - Synchronisation KW - Musterbildung KW - Phasen-Gleichungen KW - Phasen-Oszillatoren KW - Kuramoto Modell KW - synchronization KW - pattern formation KW - phase equations KW - phase oscillators KW - Kuramoto model Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15973 ER -