TY - JOUR A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Buchovecky, M. A1 - Bugaev, V. A1 - Cerruti, M. A1 - Connolly, M. P. A1 - Cui, W. A1 - Falcone, A. A1 - Alonso, M. Fernandez A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Griffin, S. A1 - Hutten, M. A1 - Hervet, O. A1 - Holder, J. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Pohl, M. A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rovero, A. C. A1 - Sadeh, I. A1 - Shahinyan, K. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Weisgarber, T. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Zitzer, B. T1 - Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron-positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron- positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218 vertical bar 304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10(-14) G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES. 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission. KW - BL Lacertae objects: general KW - galaxies: active KW - gamma rays: galaxies KW - magnetic fields Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/835/2/288 SN - 0004-637X SN - 1538-4357 VL - 835 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, Wystan A1 - Bird, Ralph A1 - Bourbeau, E. A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Cerruti, M. A1 - Connolly, M. P. A1 - Cui, W. A1 - Dwarkadas, Vikram V. A1 - Errando, M. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Griffin, S. A1 - Huetten, M. A1 - Hanna, D. A1 - Holder, J. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Kumar, S. A1 - Lang, M. J. A1 - Maier, G. A1 - McArthur, S. A1 - McCann, A. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, Nahee A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Sadeh, I. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Slane, P. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Trepanier, S. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Weisgarber, T. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Zitzer, B. T1 - Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi JF - The astrophysical journal : an international review of spectroscopy and astronomical physics KW - material KW - data behind figure Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/836/1/23 SN - 0004-637X SN - 1538-4357 VL - 836 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Abeysekara, A. U. A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, Wystan A1 - Bird, Ralph A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cerruti, M. A1 - Chen, X. A1 - Ciupik, L. A1 - Cui, W. A1 - Dickinson, H. J. A1 - Eisch, J. D. A1 - Errando, M. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Grube, J. A1 - Hutten, M. A1 - Hakansson, N. A1 - Hanna, D. A1 - Holder, J. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Maier, G. A1 - McArthur, S. A1 - McCann, A. A1 - Meagher, K. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nguyen, T. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Pelassa, V. A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Tucci, J. V. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weiner, O. M. A1 - Weinstein, A. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Fegan, S. A1 - Giebels, B. A1 - Horan, D. A1 - Berdyugin, A. A1 - Kuan, J. A1 - Lindfors, E. A1 - Nilsson, K. A1 - Oksanen, A. A1 - Prokoph, H. A1 - Reinthal, R. A1 - Takalo, L. A1 - Zefi, F. T1 - A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3. KW - BL Lacertae objects: individual (B2 1215+30, VER J1217+301) KW - galaxies: active KW - galaxies: jets KW - galaxies: nuclei KW - gamma rays: galaxies Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/836/2/205 SN - 0004-637X SN - 1538-4357 VL - 836 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Bourbeau, E. A1 - Brantseg, T. A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cerruti, M. A1 - Christiansen, J. L. A1 - Connolly, M. P. A1 - Cui, W. A1 - Daniel, M. K. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Geringer-Sameth, A. A1 - Griffin, S. A1 - Grube, J. A1 - Hütten, M. A1 - Hakansson, N. A1 - Hanna, D. A1 - Hervet, O. A1 - Holder, J. A1 - Hughes, G. A1 - Hummensky, B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Koushiappas, S. A1 - Krause, M. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - McArthur, S. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Pohl, M. A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Sadeh, I. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Smith, A. W. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Trepanier, S. A1 - Tucci, J. V. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Wilcox, P. A1 - Williams, D. A. A1 - Zitzer, B. T1 - Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of similar to 230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35 x 10(-23) cm(3) s(-1) at 1 TeV for the bottom quark (b (b) over bar) final state, 2.85 x 10(-24) cm(3) s(-1) at 1 TeV for the tau lepton (tau+tau(-)) final state and 1.32 x 10-25 cm(3) s(-1) at 1 TeV for the gauge boson (gamma gamma) final state. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevD.95.082001 SN - 2470-0010 SN - 2470-0029 VL - 95 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Bird, Ralph A1 - Bourbeau, E. A1 - Bouvier, A. A1 - Buchovecky, M. A1 - Bugaev, V. A1 - Cardenzana, J. V. A1 - Cerruti, M. A1 - Ciupik, L. A1 - Connolly, M. P. A1 - Cui, W. A1 - Daniel, M. K. A1 - Errando, M. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Hanna, D. A1 - Hervet, O. A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Hutten, M. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Sadeh, I. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Trepanier, S. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Wilcox, P. A1 - Williams, D. A. A1 - Zitzer, B. T1 - Gamma-ray observations under bright moonlight with VERITAS JF - Astroparticle physics N2 - Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations. (C) 2017 Elsevier B.V. All rights reserved. KW - Instrumentation KW - Moonlight KW - Observing methods KW - VERITAS KW - IACT Y1 - 2017 U6 - https://doi.org/10.1016/j.astropartphys.2017.03.001 SN - 0927-6505 SN - 1873-2852 VL - 91 SP - 34 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ahnen, M. L. A1 - Ansoldi, S. A1 - Antonelli, L. A. A1 - Antoranz, P. A1 - Babic, A. A1 - Banerjee, B. A1 - Bangale, P. A1 - de Almeida, U. Barres A1 - Barrio, J. A. A1 - Gonzalez, J. Becerra A1 - Bednarek, W. A1 - Bernardini, E. A1 - Berti, A. A1 - Biasuzzi, B. A1 - Biland, A. A1 - Blanch, O. A1 - Bonnefoy, S. A1 - Bonnoli, G. A1 - Borracci, F. A1 - Bretz, T. A1 - Buson, S. A1 - Carosi, A. A1 - Chatterjee, A. A1 - Clavero, R. A1 - Colin, P. A1 - Colombo, E. A1 - Contreras, J. L. A1 - Cortina, J. A1 - Covino, S. A1 - Da Vela, P. A1 - Dazzi, F. A1 - De Angelis, A. A1 - De Lotto, B. A1 - Wilhelmi, E. de Ona A1 - Di Pierro, F. A1 - Doert, M. A1 - Dominguez, A. A1 - Prester, D. Dominis A1 - Dorner, D. A1 - Doro, M. A1 - Einecke, S. A1 - Glawion, D. Eisenacher A1 - Elsaesser, D. A1 - Engelkemeier, M. A1 - Ramazani, V. Fallah A1 - Fernandez-Barral, A. A1 - Fidalgo, D. A1 - Fonseca, M. V. A1 - Font, L. A1 - Frantzen, K. A1 - Fruck, C. A1 - Galindo, D. A1 - Lopez, R. J. Garcia A1 - Garczarczyk, M. A1 - Terrats, D. Garrido A1 - Gaug, M. A1 - Giammaria, P. A1 - Godinovic, N. A1 - Gonzalez Munoz, A. A1 - Gora, D. A1 - Guberman, D. A1 - Hadasch, D. A1 - Hahn, A. A1 - Hanabata, Y. A1 - Hayashida, M. A1 - Herrera, J. A1 - Hose, J. A1 - Hrupec, D. A1 - Hughes, G. A1 - Idec, W. A1 - Kodani, K. A1 - Konno, Y. A1 - Kubo, H. A1 - Kushida, J. A1 - La Barbera, A. A1 - Lelas, D. A1 - Lindfors, E. A1 - Lombardi, S. A1 - Longo, F. A1 - Lopez, M. A1 - Lopez-Coto, R. A1 - Majumdar, P. A1 - Makariev, M. A1 - Mallot, K. A1 - Maneva, G. A1 - Manganaro, M. A1 - Mannheim, K. A1 - Maraschi, L. A1 - Marcote, B. A1 - Mariotti, M. A1 - Martinez, M. A1 - Mazin, D. A1 - Menzel, U. A1 - Miranda, J. M. A1 - Mirzoyan, R. A1 - Moralejo, A. A1 - Moretti, E. A1 - Nakajima, D. A1 - Neustroev, V. A1 - Niedzwiecki, A. A1 - Rosillo, M. Nievas A1 - Nilsson, K. A1 - Nishijima, K. A1 - Noda, K. A1 - Nogues, L. A1 - Overkemping, A. A1 - Paiano, S. A1 - Palacio, J. A1 - Palatiello, M. A1 - Paneque, D. A1 - Paoletti, R. A1 - Paredes, J. M. A1 - Paredes-Fortuny, X. A1 - Pedaletti, G. A1 - Peresano, M. A1 - Perri, L. A1 - Persic, M. A1 - Poutanen, J. A1 - Moroni, P. G. Prada A1 - Prandini, E. A1 - Puljak, I. A1 - Reichardt, I. A1 - Rhode, W. A1 - Ribo, M. A1 - Rico, J. A1 - Rodriguez Garcia, J. A1 - Saito, T. A1 - Satalecka, K. A1 - Schroder, S. A1 - Schultz, C. A1 - Schweizer, T. A1 - Shore, S. N. A1 - Sillanpaa, A. A1 - Sitarek, J. A1 - Snidaric, I. A1 - Sobczynska, D. A1 - Stamerra, A. A1 - Steinbring, T. A1 - Strzys, M. A1 - Suric, T. A1 - Takalo, L. A1 - Tavecchio, F. A1 - Temnikov, P. A1 - Terzic, T. A1 - Tescaro, D. A1 - Teshima, M. A1 - Thaele, J. A1 - Torres, D. F. A1 - Toyama, T. A1 - Treves, A. A1 - Vanzo, G. A1 - Verguilov, V. A1 - Vovk, I. A1 - Ward, J. E. A1 - Will, M. A1 - Wu, M. H. A1 - Zanin, R. A1 - Abeysekara, A. U. A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Connolly, M. P. A1 - Cui, W. A1 - Dickinson, H. J. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Flinders, A. A1 - Fortson, L. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Grube, J. A1 - Huetten, M. A1 - Hanna, D. A1 - Holder, J. A1 - Humensky, T. B. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Maier, G. A1 - McCann, A. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, N. A1 - Park, N. A1 - Perkins, J. A1 - Pichel, A. A1 - Pohl, M. A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rovero, A. C. A1 - Rulten, C. A1 - Sadeh, I. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Telezhinsky, Igor O. A1 - Tucci, J. V. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Zitzer, B. A1 - Razzaque, S. A1 - Villata, M. A1 - Raiteri, C. M. A1 - Aller, H. D. A1 - Aller, M. F. A1 - Larionov, V. M. A1 - Arkharov, A. A. A1 - Blinov, D. A. A1 - Efimova, N. V. A1 - Grishina, T. S. A1 - Hagen-Thorn, V. A. A1 - Kopatskaya, E. N. A1 - Larionova, L. V. A1 - Larionova, E. G. A1 - Morozova, D. A. A1 - Troitsky, I. S. A1 - Ligustri, R. A1 - Calcidese, P. A1 - Berdyugin, A. A1 - Kurtanidze, O. M. A1 - Nikolashvili, M. G. A1 - Kimeridze, G. N. A1 - Sigua, L. A. A1 - Kurtanidze, S. O. A1 - Chigladze, R. A. A1 - Chen, W. P. A1 - Koptelova, E. A1 - Sakamoto, T. A1 - Sadun, A. C. A1 - Moody, J. W. A1 - Pace, C. A1 - Pearson, R. A1 - Yatsu, Y. A1 - Mori, Y. A1 - Carraminyana, A. A1 - Carrasco, L. A1 - de la Fuente, E. A1 - Norris, J. P. A1 - Smith, P. S. A1 - Wehrle, A. A1 - Gurwell, M. A. A1 - Zook, A. A1 - Pagani, C. A1 - Perri, M. A1 - Capalbi, M. A1 - Cesarini, A. A1 - Krimm, H. A. A1 - Kovalev, Y. Y. A1 - Kovalev, Yu. A. A1 - Ros, E. A1 - Pushkarev, A. B. A1 - Lister, M. L. A1 - Sokolovsky, K. V. A1 - Kadler, M. A1 - Piner, G. A1 - Lahteenmaki, A. A1 - Tornikoski, M. A1 - Angelakis, E. A1 - Krichbaum, T. P. A1 - Nestoras, I. A1 - Fuhrmann, L. A1 - Zensus, J. A. A1 - Cassaro, P. A1 - Orlati, A. A1 - Maccaferri, G. A1 - Leto, P. A1 - Giroletti, M. A1 - Richards, J. L. A1 - Max-Moerbeck, W. A1 - Readhead, A. C. S. T1 - Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays). Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties. KW - BL Lacertae objects: individual: Markarian 501 KW - methods: data analysis Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629540 SN - 1432-0746 VL - 603 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Brose, Robert A1 - Buchovecky, M. A1 - Bugaev, V. A1 - Connolly, M. P. A1 - Cui, W. A1 - Daniel, M. K. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Fortson, L. A1 - Furniss, A. A1 - Hanna, D. A1 - Hervet, O. A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Hutten, M. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kelley-Hoskins, N. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Petrashyk, A. A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Sadeh, I. A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weiner, O. M. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Wissel, S. A. A1 - Zitzer, B. T1 - Measurement of the iron spectrum in cosmic rays by VERITAS JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - We present a new measurement of the energy spectrum of iron nuclei in cosmic rays from 20 TeV to 500 TeV; The measurement makes use of a template-based analysis method, which, for the first time, is applied to the energy reconstruction of iron-induced air showers recorded by the VERITAS array of imaging atmospheric Cherenkov telescopes. The event selection makes use of the direct Cherenkov light which is emitted by charged particles before the first interaction, as well as other parameters related to the shape of the recorded air shower images. The measured spectrum is well described by a power law dF/dE = f(0) center dot (E/E-0)(-gamma) over the full energy range, with gamma = 2.82 +/- 0.30(stat)(-0.27)(+0.24)(syst) and f(0) = (4.82 +/- 0.98(stat)(-2.70)(+2.12)(syst)) x 10(-7) m(-2) s(-1) TeV-1 sr(-1) at E-0 = 50 TeV, with no indication of a cutoff or spectral break. The measured differential flux is compatible with previous results, with improved statistical uncertainty at the highest energies. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevD.98.022009 SN - 2470-0010 SN - 2470-0029 VL - 98 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Brose, Robert A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Connolly, M. P. A1 - Cui, W. A1 - Daniel, M. K. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. A1 - Huetten, M. A1 - Hanna, D. A1 - Hervet, O. A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Petrashyk, A. A1 - Pohl, M. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Sadeh, I. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Staszak, D. A1 - Sushch, I. A1 - Wakely, S. P. A1 - Wells, R. M. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Williamson, T. J. A1 - Zitzer, B. T1 - Measurement of cosmic-ray electrons at TeV energies by VERITAS JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevD.98.062004 SN - 2470-0010 SN - 2470-0029 VL - 98 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Benbow, W. A1 - Bird, R. A1 - Brill, A. A1 - Brose, Robert A1 - Chromey, A. J. A1 - Daniel, M. K. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. H. A1 - Giuri, C. A1 - Gueta, O. A1 - Hanna, D. A1 - Halpern, J. P. A1 - Hassan, Tarek A1 - Holder, J. A1 - Hughes, G. A1 - Humensky, T. B. A1 - Joyce, Amy M. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, Gernot A1 - Matthews, N. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Nievas-Rosillos, M. A1 - Ong, R. A. A1 - Park, N. A1 - Petrashyk, A. A1 - Pohl, Martin A1 - Pueschel, Elisa A1 - Quinn, John A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Sadeh, Iftach A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Sushch, Iurii A1 - Wakely, S. P. A1 - Wells, R. M. A1 - Wilcox, P. A1 - Wilhelm, Alina A1 - Williams, David A. A1 - Williamson, T. J. T1 - Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes JF - Nature astronomy N2 - The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars’ angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications. Y1 - 2019 U6 - https://doi.org/10.1038/s41550-019-0741-z SN - 2397-3366 VL - 3 IS - 6 SP - 511 EP - 516 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ahnen, M. L. A1 - Ansoldi, S. A1 - Antonelli, L. A. A1 - Arcaro, C. A1 - Babic, A. A1 - Banerjee, B. A1 - Bangale, P. A1 - Barres de Almeida, U. A1 - Barrio, J. A. A1 - Gonzalez, J. Becerra A1 - Bednarek, W. A1 - Bernardini, E. A1 - Berti, A. A1 - Bhattacharyya, W. A1 - Blanch, O. A1 - Bonnoli, G. A1 - Carosi, R. A1 - Carosi, A. A1 - Chatterjee, A. A1 - Colak, S. M. A1 - Colin, P. A1 - Colombo, E. A1 - Contreras, J. L. A1 - Cortina, J. A1 - Covino, S. A1 - Cumani, P. A1 - Da Vela, P. A1 - Dazzi, F. A1 - De Angelis, A. A1 - De Lotto, B. A1 - Delfino, M. A1 - Delgado, Jose Miguel Martins A1 - Di Pierro, F. A1 - Doert, M. A1 - Dominguez, A. A1 - Prester, D. Dominis A1 - Doro, M. A1 - Glawion, D. Eisenacher A1 - Engelkemeier, M. A1 - Ramazani, V. Fallah A1 - Fernandez-Barral, A. A1 - Fidalgo, D. A1 - Fonseca, M. V. A1 - Font, L. A1 - Fruck, C. A1 - Galindo, D. A1 - Lopez, R. J. Garcia A1 - Garczarczyk, M. A1 - Gaug, M. A1 - Giammaria, P. A1 - Godinovic, N. A1 - Gora, D. A1 - Guberman, D. A1 - Hadasch, D. A1 - Hahn, A. A1 - Hassan, T. A1 - Hayashida, M. A1 - Herrera, J. A1 - Hose, J. A1 - Hrupec, D. A1 - Ishio, K. A1 - Konno, Y. A1 - Kubo, H. A1 - Kushida, J. A1 - Kuvezdic, D. A1 - Lelas, D. A1 - Lindfors, E. A1 - Lombardi, S. A1 - Longo, F. A1 - Lopez, M. A1 - Maggio, C. A1 - Majumdar, P. A1 - Makariev, M. A1 - Maneva, G. A1 - Manganaro, M. A1 - Maraschi, L. A1 - Mariotti, M. A1 - Martinez, M. A1 - Mazin, D. A1 - Menzel, U. A1 - Minev, M. A1 - Miranda, J. M. A1 - Mirzoyan, R. A1 - Moralejo, A. A1 - Moreno, V. A1 - Moretti, E. A1 - Nagayoshi, T. A1 - Neustroev, V. A1 - Niedzwiecki, A. A1 - Nievas Rosillo, M. A1 - Nigro, C. A1 - Nilsson, K. A1 - Ninci, D. A1 - Nishijima, K. A1 - Noda, K. A1 - Nogues, L. A1 - Paiano, S. A1 - Palacio, J. A1 - Paneque, D. A1 - Paoletti, R. A1 - Paredes, J. M. A1 - Pedaletti, G. A1 - Peresano, M. A1 - Perri, L. A1 - Persic, M. A1 - Moroni, P. G. Prada A1 - Prandini, E. A1 - Puljak, I. A1 - Garcia, J. R. A1 - Reichardt, I. A1 - Ribo, M. A1 - Rico, J. A1 - Righi, C. A1 - Rugliancich, A. A1 - Saito, T. A1 - Satalecka, K. A1 - Schroeder, S. A1 - Schweizer, T. A1 - Shore, S. N. A1 - Sitarek, J. A1 - Snidaric, I. A1 - Sobczynska, D. A1 - Stamerra, A. A1 - Strzys, M. A1 - Suric, T. A1 - Takalo, L. A1 - Tavecchio, F. A1 - Temnikov, P. A1 - Terzic, T. A1 - Teshima, M. A1 - Torres-Alba, N. A1 - Treves, A. A1 - Tsujimoto, S. A1 - Vanzo, G. A1 - Vazquez Acosta, M. A1 - Vovk, I. A1 - Ward, J. E. A1 - Will, M. A1 - Zaric, D. A1 - Arbet-Engels, A. A1 - Baack, D. A1 - Balbo, M. A1 - Biland, A. A1 - Blank, M. A1 - Bretz, T. A1 - Bruegge, K. A1 - Bulinski, M. A1 - Buss, J. A1 - Dmytriiev, A. A1 - Dorner, D. A1 - Einecke, S. A1 - Elsaesser, D. A1 - Herbst, T. A1 - Hildebrand, D. A1 - Kortmann, L. A1 - Linhoff, L. A1 - Mahlke, M. A1 - Mannheim, K. A1 - Mueller, S. A. A1 - Neise, D. A1 - Neronov, A. A1 - Noethe, M. A1 - Oberkirch, J. A1 - Paravac, A. A1 - Rhode, W. A1 - Schleicher, B. A1 - Schulz, F. A1 - Sedlaczek, K. A1 - Shukla, A. A1 - Sliusar, V. A1 - Walter, R. A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Brose, Robert A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Christiansen, J. L. A1 - Cui, W. A1 - Daniel, M. K. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Gillanders, G. H. A1 - Gueta, O. A1 - Hanna, D. A1 - Hervet, O. A1 - Holder, J. A1 - Hughes, G. A1 - Huetten, M. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Kumar, S. A1 - Lang, M. J. A1 - Lin, T. T. Y. A1 - Maier, G. A1 - McArthur, S. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Petrashyk, A. A1 - Pichel, A. A1 - Pohl, Martin A1 - Quinn, J. A1 - Ragan, K. A1 - Reynolds, P. T. A1 - Richards, G. T. A1 - Roache, E. A1 - Rovero, A. C. A1 - Rulten, C. A1 - Sadeh, I. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Sushch, Iurii A1 - Tyler, J. A1 - Wakely, S. P. A1 - Weinstein, A. A1 - Wells, R. M. A1 - Wilcox, P. A1 - Wilhel, A. A1 - Williams, D. A. A1 - Williamson, T. J. A1 - Zitzer, B. A1 - Perri, M. A1 - Verrecchia, F. A1 - Leto, C. A1 - Villata, M. A1 - Raiteri, C. M. A1 - Jorstad, S. G. A1 - Larionov, V. M. A1 - Blinov, D. A. A1 - Grishina, T. S. A1 - Kopatskaya, E. N. A1 - Larionova, E. G. A1 - Nikiforova, A. A. A1 - Morozova, D. A. A1 - Troitskaya, Yu. V. A1 - Troitsky, I. S. A1 - Kurtanidze, O. M. A1 - Nikolashvili, M. G. A1 - Kurtanidze, S. O. A1 - Kimeridze, G. N. A1 - Chigladze, R. A. A1 - Strigachev, A. A1 - Sadun, A. C. T1 - Extreme HBL behavior of Markarian 501 during 2012 JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of similar to 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was similar to 3 CU, and the peak of the high-energy spectral component was found to be at similar to 2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices <2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance <3 sigma) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays. KW - astroparticle physics KW - acceleration of particles KW - radiation mechanisms: non-thermal KW - BL Lacertae objects: general KW - BL Lacertae objects: individual: Mrk501 Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833704 SN - 1432-0746 VL - 620 PB - EDP Sciences CY - Les Ulis ER -