TY - JOUR A1 - Kurzke, Henning A1 - Kiethe, Jan A1 - Heuer, Axel A1 - Jechow, Andreas T1 - Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal JF - Laser physics letters N2 - The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, g((2))(0)= 1.9 +/- 0.1, indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find application in imaging, metrology and quantum optics experiments. KW - nonlinear frequency conversion KW - periodically poled material KW - waveguides KW - incoherent radiation Y1 - 2017 U6 - https://doi.org/10.1088/1612-202X/aa6889 SN - 1612-2011 SN - 1612-202X VL - 14 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Kiethe, Jan A1 - Heuer, Axel A1 - Jechow, Andreas T1 - Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode JF - Laser physics letters N2 - We study the degree of second-order coherence of the emission of a high-power multi-quantum well superluminescent diode with a lateral tapered amplifier section with and without optical feedback. When operated in an external cavity, the degree of second-order coherence changed from the almost thermal case of g((2))(0)approximate to 1.9 towards the mostly coherent case of g((2)) (0) approximate to 1.2 when the injection current at the tapered section was increased. We found good agreement with semi-classical laser theory near and below threshold while above laser threshold a slightly higher g((2))(0) was observed. As a free running device, the superluminescent diode yielded more than 400 mW of optical output power with good spatial beam quality of M-slow(2) < 1.6. In this case, the degree of second-order coherence dropped only slightly from 1.9 at low powers to 1.6 at the maximum output power. To our knowledge, this is the first investigation of a high-power tapered superluminescent diode concerning the degree of second-order coherence. Such a device might be useful for real-world applications probing the second order coherence function, such as ghost imaging. KW - photon statistics KW - incoherent light KW - superluminescent diodes Y1 - 2017 U6 - https://doi.org/10.1088/1612-202X/aa772c SN - 1612-2011 SN - 1612-202X VL - 14 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Niebuhr, Mario A1 - Heuer, Axel T1 - Phase measurement and far-field reconstruction on externally coupled laser diode arrays JF - Optics express : the international electronic journal of optics N2 - Passive coherent combination of several discrete low power laser diodes is a promising way to overcome the issue of degrading beam quality when scaling single emitters to > 10W output power. Such systems would be an efficient alternative to current high power sources, yet they suffer from fatal coherence loss when operated well above threshold. We present a new way to obtain detailed coherence information for laser diode arrays using a spatial light modulator to help identify the underlying decoherence processes. Reconstruction tests of the emitted far-field distribution are conducted to evaluate the performance of our setup. (C) 2017 Optical Society of America Y1 - 2017 U6 - https://doi.org/10.1364/OE.25.014317 SN - 1094-4087 VL - 25 SP - 14317 EP - 14322 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Niebuhr, Mario A1 - Heuer, Axel T1 - Phase measurement and far-field reconstruction on externally coupled laser diode arrays JF - Optics express N2 - Passive coherent combination of several discrete low power laser diodes is a promising way to overcome the issue of degrading beam quality when scaling single emitters to > 10W output power. Such systems would be an efficient alternative to current high power sources, yet they suffer from fatal coherence loss when operated well above threshold. We present a new way to obtain detailed coherence information for laser diode arrays using a spatial light modulator to help identify the underlying decoherence processes. Reconstruction tests of the emitted far-field distribution are conducted to evaluate the performance of our setup. Y1 - 2017 U6 - https://doi.org/10.1364/OE.25.014317 SN - 1094-4087 VL - 25 IS - 13 SP - 14317 EP - 14322 PB - Optical Society of America CY - Washington, DC ER - TY - JOUR A1 - Menzel, Ralf A1 - Puhlmann, Dirk A1 - Heuer, Axel T1 - Complementarity in single photon interference – the role of the mode function and vacuum fields JF - Journal of the European Optical Society-Rapid N2 - Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics. KW - Quantum optics KW - Complementarity KW - Mode function KW - Vacuum fields Y1 - 2017 U6 - https://doi.org/10.1186/s41476-017-0036-x SN - 1990-2573 VL - 13 PB - Springer ER -