TY - JOUR A1 - Metzler, Ralf T1 - Brownian motion and beyond: first-passage, power spectrum, non-Gaussianity, and anomalous diffusion JF - Journal of statistical mechanics: theory and experiment N2 - Brownian motion is a ubiquitous physical phenomenon across the sciences. After its discovery by Brown and intensive study since the first half of the 20th century, many different aspects of Brownian motion and stochastic processes in general have been addressed in Statistical Physics. In particular, there now exists a very large range of applications of stochastic processes in various disciplines. Here we provide a summary of some of the recent developments in the field of stochastic processes, highlighting both the experimental findings and theoretical frameworks. KW - 15 KW - 4 Y1 - 2019 U6 - https://doi.org/10.1088/1742-5468/ab4988 SN - 1742-5468 VL - 2019 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Kindler, Oliver A1 - Pulkkinen, Otto A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Burst Statistics in an Early Biofilm Quorum Sensing Mode BT - The Role of Spatial Colony-Growth Heterogeneity T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 777 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439099 SN - 1866-8372 IS - 777 ER - TY - JOUR A1 - Kindler, Oliver A1 - Pulkkinen, Otto A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Burst Statistics in an Early Biofilm Quorum Sensing Mode BT - The Role of Spatial Colony-Growth Heterogeneity JF - Scientific Reports N2 - Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-48525-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited part of Springer Nature CY - London ER - TY - GEN A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Codifference can detect ergodicity breaking and non-Gaussianity T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 748 KW - diffusion KW - anomalous diffusion KW - stochastic time series Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436178 IS - 748 ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Codifference can detect ergodicity breaking and non-Gaussianity JF - New Journal of Physics N2 - We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement. KW - diffusion KW - stochastic time series KW - anomalous diffusion Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab13f3 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - JOUR A1 - Teomy, Eial A1 - Metzler, Ralf T1 - Correlations and transport in exclusion processes with general finite memory JF - Journal of statistical mechanics: theory and experiment KW - Brownian motion KW - exclusion processes Y1 - 2019 U6 - https://doi.org/10.1088/1742-5468/ab47fb SN - 1742-5468 VL - 2019 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Molina-Garcia, Daniel A1 - Sandev, Trifce A1 - Safdari, Hadiseh A1 - Pagnini, Gianni A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Crossover from anomalous to normal diffusion BT - truncated power-law noise correlations and applications to dynamics in lipid bilayers T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive–diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 507 KW - anomalous diffusion KW - truncated power-law correlated noise KW - lipid bilayer membrane dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422590 SN - 1866-8372 IS - 507 ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Blackburn, George A1 - Lomholt, Michael A. A1 - Watkins, Nicholas W. A1 - Metzler, Ralf A1 - Klages, Rainer A1 - Chechkin, Aleksei V. T1 - First passage and first hitting times of Levy flights and Levy walks JF - New journal of physics : the open-access journal for physics N2 - For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms. KW - Levy flights KW - Levy walks KW - first-passage time KW - first-hitting time Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab41bb SN - 1367-2630 VL - 21 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Palyulin, Vladimir V A1 - Blackburn, George A1 - Lomholt, Michael A A1 - Watkins, Nicholas W A1 - Metzler, Ralf A1 - Klages, Rainer A1 - Chechkin, Aleksei V. T1 - First passage and first hitting times of Lévy flights and Lévy walks T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 785 KW - Lévy flights KW - Lévy walks KW - first-passage time KW - first-hitting time Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439832 SN - 1866-8372 IS - 785 ER - TY - JOUR A1 - Palyulin, Vladimir V A1 - Blackburn, George A1 - Lomholt, Michael A A1 - Watkins, Nicholas W A1 - Metzler, Ralf A1 - Klages, Rainer A1 - Chechkin, Aleksei V. T1 - First passage and first hitting times of Lévy flights and Lévy walks JF - New Journal of Physics N2 - For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms. KW - Lévy flights KW - Lévy walks KW - first-passage time KW - first-hitting time Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab41bb SN - 1367-2630 VL - 21 PB - Dt. Physikalische Ges. CY - Bad Honnef ER -