TY - GEN A1 - Frindte, Katharina A1 - Allgaier, Martin A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Microbial response to experimentally controlled redox transitions at the sediment water interface T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 509 KW - anaerobic methane oxidation KW - oligotrophic lake Stechlin KW - ribosomal RNA KW - vertical-distribution KW - coastal sediments KW - sulfate reduction KW - Shallow Lake KW - bacteria KW - carbon KW - communities Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408464 SN - 1866-8372 IS - 509 ER - TY - GEN A1 - Dubovskaya, Olga P. A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Kirillin, Georgiy A1 - Buseva, Zhanna A1 - Kasprzak, Peter A1 - Tolomeev, Aleksandr P. A1 - Grossart, Hans-Peter T1 - Estimating in situ zooplankton non-predation mortality in an oligo-mesotrophic lake from sediment trap data BT - caveats and reality check T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 501 KW - fresh-water KW - nonconsumptive mortality KW - crustacean zooplankton KW - nonpredatory mortality KW - siberian reservoir KW - seasonal dynamics KW - copepod carcasses KW - sinking speed KW - aniline blue KW - marine snow Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408392 SN - 1866-8372 IS - 501 ER - TY - GEN A1 - Rieck, Angelika A1 - Herlemann, Daniel P. R. A1 - Jürgens, Klaus A1 - Grossart, Hans-Peter T1 - Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea T2 - Frontiers in microbiology N2 - Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 428 KW - microbial communities KW - microbial diversity KW - particle-associated and free-living bacteria KW - Baltic Sea KW - salinity gradient KW - seasons KW - 454-pyrosequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406442 ER -