TY - JOUR A1 - Abouserie, Ahed A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆ JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) Å, b = 9.3486(3) Å, c = 14.1168(8) Å, β = 102.288(5)°, V = 1245.97(11) ų, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K. KW - Ionic Liquid Precursor KW - Thermochromism KW - Salts KW - Nanostructures KW - Catalysis KW - Solvents KW - Complex KW - Gas Y1 - 2018 U6 - https://doi.org/10.1515/NCRS-2018-0099 SN - 2194-4946 SN - 2196-7105 VL - 233 IS - 4 SP - 743 EP - 746 PB - de Gruyter CY - Berlin und München ER - TY - JOUR A1 - Folkertsma, Remco A1 - Westbury, Michael V. A1 - Eccard, Jana A1 - Hofreiter, Michael T1 - The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) JF - Mitochondrial DNA Part B N2 - The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus. KW - Microtus arvalis KW - Arvicolinae KW - mitochondrial genome KW - common vole KW - phylogeny Y1 - 2018 U6 - https://doi.org/10.1080/23802359.2018.1457994 SN - 2380-2359 VL - 3 IS - 1 SP - 446 EP - 447 ER - TY - JOUR A1 - Stettner, Samuel A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Eppler, Jayson A1 - Roth, Achim A1 - Bartsch, Annett A1 - Rabus, Bernhard T1 - TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small arctic catchments BT - a case study on qikiqtaruk (Herschel Island), Canada JF - Remote sensing N2 - The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt. KW - Snow Cover Extent (SCE) KW - TerraSAR-X KW - Landsat KW - wet snow KW - small Arctic catchments KW - satellite time series Y1 - 2018 U6 - https://doi.org/10.3390/rs10071155 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Simulation of herbicide impacts on a plant community BT - comparing model predictions of the plant community model IBC-grass to empirical data JF - Environmental Sciences Europe N2 - Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment. KW - Plant community model KW - Non-target terrestrial plants KW - Community-level effects KW - Herbicide risk assessment KW - Individual-based modeling Y1 - 2018 U6 - https://doi.org/10.1186/s12302-018-0174-9 SN - 2190-4715 SN - 2190-4707 VL - 30 IS - 44 PB - Springer CY - Berlin und Heidelberg ER - TY - JOUR A1 - Chen, Jie A1 - Günther, Frank A1 - Grosse, Guido A1 - Liu, Lin A1 - Lin, Hui T1 - Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta JF - Remote sensing N2 - Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations. KW - Sentinel-1 InSAR KW - Yedoma uplands KW - Sobo-Sise Island KW - summer heave KW - permafrost thaw subsidence KW - active layer Y1 - 2018 U6 - https://doi.org/10.3390/rs10071152 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schlegl, Sandra A1 - Dittmer, Nina A1 - Hoffmann, Svenja A1 - Voderholzer, Ulrich T1 - Self-reported quantity, compulsiveness and motives of exercise in patients with eating disorders and healthy controls BT - differences and similarities JF - Journal of eating disorders N2 - Background: Compulsive exercise (CE) is a frequent symptom in patients with eating disorders (EDs). It includes, in addition to quantitatively excessive exercise behaviour, a driven aspect and specific motives of exercise. CE is generally associated with worse therapy outcomes. The aims of the study were to compare self-reported quantity of exercise, compulsiveness of exercise as well as motives for exercise between patients with anorexia nervosa (AN), bulimia nervosa (BN) and healthy controls (HC). Additionally, we wanted to explore predictors of compulsive exercise (CE) in each group. Methods: We investigated 335 female participants (n = 226 inpatients, n = 109 HC) and assessed self-reported quantity of exercise, compulsiveness of exercise (Compulsive Exercise Test), motives for exercise (Exercise Motivations Inventory-2), ED symptoms (Eating Disorder Inventory-2), obsessive-compulsiveness (Obsessive-Compulsive Inventory-Revised), general psychopathology (Brief Symptom Inventory-18) and depression (Beck Depression Inventory-2). Results: Both patients with AN and BN exercised significantly more hours per week and showed significantly higher CE than HC; no differences were found between patients with AN and BN. Patients with EDs and HC also partly varied in motives for exercise. Specific motives were enjoyment, challenge, recognition and weight management in patients with EDs in contrast to ill-health avoidance and affiliation in HC. Patients with AN and BN only differed in regard to exercise for appearance reasons in which patients with BN scored higher. The most relevant predictor of CE across groups was exercise for weight and shape reasons. Conclusions: Exercise behaviours and motives differ between patients with EDs and HC. CE was pronounced in both patients with AN and BN. Therefore, future research should focus not only on CE in patients with AN, but also on CE in patients with BN. Similarities in CE in patients with AN and BN support a transdiagnostic approach during the development of interventions specifically targeting CE in patients with EDs. KW - Anorexia nervosa KW - Bulimia nervosa KW - Eating disorders KW - Compulsive exercise KW - Motives for exercise KW - Inpatient KW - Predictor KW - Healthy controls Y1 - 2018 U6 - https://doi.org/10.1186/s40337-018-0202-6 SN - 2050-2974 VL - 6 PB - BMC CY - London ER - TY - JOUR A1 - Delgado, José Miguel Martins A1 - Voss, Sebastian A1 - Bürger, Gerd A1 - Vormoor, Klaus Josef A1 - Murawski, Aline A1 - Rodrigues Pereira, José Marcelo A1 - Martins, Eduardo A1 - Vasconcelos Júnior, Francisco A1 - Francke, Till T1 - Seasonal drought prediction for semiarid northeastern Brazil BT - verification of six hydro-meteorological forecast products JF - Hydrology and Earth System Sciences N2 - A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Ceará’s research foundation for meteorology)and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation,(b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil. KW - Hydrological drought KW - River-Basin KW - Model KW - Patterns KW - Precipitation KW - Variability KW - Nordeste Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-5041-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 9 SP - 5041 EP - 5056 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Reversed predator BT - prey cycles are driven by the amplitude of prey oscillations JF - Ecology and Evolution N2 - Ecoevolutionary feedbacks in predator–prey systems have been shown to qualitatively alter predator–prey dynamics. As a striking example, defense–offense coevolution can reverse predator–prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼‐phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾‐lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator–prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small‐amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems. KW - coevolution KW - ecoevolutionary dynamics KW - predator-prey dynamics KW - top-down control Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4184 SN - 2045-7758 SP - 1 EP - 13 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan Alfred A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen 2-428 JF - Galaxies N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - supernovae Y1 - 2018 U6 - https://doi.org/10.3390/galaxies6030088 SN - 2075-4434 VL - 6 IS - 3 ER - TY - JOUR A1 - Niebuur, Bart-Jan A1 - Puchmayr, Jonas A1 - Herold, Christian A1 - Kreuzer, Lucas A1 - Hildebrand, Viet A1 - Müller-Buschbaum, Peter A1 - Laschewsky, Andre A1 - Papadakis, Christine M. T1 - Polysulfobetaines in aqueous solution and in thin film geometry JF - Materials N2 - Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0-8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H2O. KW - polyzwitterions KW - polysulfobetaines KW - dynamic light scattering KW - phase behavior Y1 - 2018 U6 - https://doi.org/10.3390/ma11050850 SN - 1996-1944 VL - 11 IS - 5 PB - MDPI CY - Basel ER -