TY - GEN A1 - Sieg, Tobias A1 - Shinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 708 KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429119 IS - 708 ER - TY - JOUR A1 - Sieg, Tobias A1 - Schinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification JF - PLoS ONE N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0212932 SN - 1932-6203 VL - 14 IS - 4 PB - Public Library of Science CY - San Francisco ER - TY - GEN A1 - Laudan, Jonas A1 - Rözer, Viktor A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Thieken, Annegret T1 - Damage assessment in Braunsbach 2016 BT - data collection and analysis for an improved understanding of damaging processes during flash floods T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 653 KW - building damage KW - mai 29th KW - flow KW - vulnerability KW - 2016-origin KW - pathways KW - Germany KW - impacts KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418392 SN - 1866-8372 IS - 653 ER -