TY - JOUR A1 - Milles, Alexander A1 - Dammhahn, Melanie A1 - Grimm, Volker T1 - Intraspecific trait variation in personality-related movement behavior promotes coexistence JF - Oikos N2 - Movement behavior is an essential element of fundamental ecological processes such as competition and predation. Although intraspecific trait variation (ITV) in movement behaviors is pervasive, its consequences for ecological community dynamics are still not fully understood. Using a newly developed individual-based model, we analyzed how given and constant ITVs in foraging movement affect differences in foraging efficiencies between species competing for common resources under various resource distributions. Further, we analyzed how the effect of ITV on emerging differences in competitive abilities ultimately affects species coexistence. The model is generic but mimics observed patterns of among-individual covariation between personality, movement and space use in ground-dwelling rodents. Interacting species differed in their mean behavioral types along a slow-fast continuum, integrating consistent individual variation in average behavioral expression and responsiveness (i.e. behavioral reaction norms). We found that ITV reduced interspecific differences in competitive abilities by 5-35% and thereby promoted coexistence via an equalizing mechanism. The emergent relationships between behavioral types and foraging efficiency are characteristic for specific environmental contexts of resource distribution and population density. As these relationships are asymmetric, species that were either 'too fast' or 'too slow' benefited differently from ITV. Thus, ITV in movement behavior has consequences for species coexistence but to predict its effect in a given system requires intimate knowledge on how variation in movement traits relates to fitness components along an environmental gradient. KW - animal behavior KW - animal movement KW - coexistence KW - competitive ability KW - foraging KW - individual-based model Y1 - 2020 U6 - https://doi.org/10.1111/oik.07431 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 10 SP - 1441 EP - 1454 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bürger, Gerd A1 - Pfister, A. A1 - Bronstert, Axel T1 - Temperature-Driven Rise in Extreme Sub-Hourly Rainfall JF - Journal of climate N2 - Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature. KW - Extreme events KW - Rainfall KW - Climate change KW - Statistical techniques KW - Time series KW - Stochastic models Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-19-0136.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 22 SP - 7597 EP - 7609 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Markovic, Danijela A1 - Walz, Ariane A1 - Kärcher, Oskar T1 - Scale effects on the performance of niche-based models of freshwater fish distributions: Local vs. upstream area influences JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Niche-based species distribution models (SDMs) play a central role in studying species response to environmental change. Effective management and conservation plans for freshwater ecosystems require SDMs that accommodate hierarchical catchment ordering and provide clarity on the performance of such models across multiple scales. The scale-dependence components considered here are: (a) environment spatial structure, represented by hierarchical catchment ordering following the Strahler system; (b) analysis grain, that included 1st to 5th order catchments; and (c) response grain, the grain at which species respond most, represented by local and upstream catchment area effects. We used fish occurrence data from the Danube River Basin and various factors representing climate, land cover and anthropogenic pressures. Our results indicate that the choice of response grain local vs. upstream area effects and the choice of analysis grain, only marginally influence the performance of SDMs. Upstream effects tend to better predict fish distributions than corresponding local effects for anthropogenic and land cover factors, in particular for species sensitive to pollution. Key predictors and their relative importance are scale and species dependent. Consequently, choosing proper species dependent spatial scales and factors is imperative for effective river rehabilitation measures. KW - Catchment order KW - Conservation planning KW - Danube KW - Freshwater fish KW - Species distribution modelling KW - Upstream area Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2019.108818 SN - 0304-3800 SN - 1872-7026 VL - 411 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, Jens A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, Veronika A1 - Piontek, Franziska A1 - Warszawski, Lila A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties JF - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. Y1 - 2015 U6 - https://doi.org/10.5194/esd-6-447-2015 SN - 2190-4979 SN - 2190-4987 VL - 6 IS - 2 SP - 447 EP - 460 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim T1 - The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes JF - Scientific reports N2 - Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central-to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. Y1 - 2015 U6 - https://doi.org/10.1038/srep17491 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sievert, Hannelore A1 - Korb, Dieter A1 - Berndt, Klaus-Peter A1 - Parnow, Klaus T1 - Neuruppiner Landschaften : ein Video. Großschmetterlinge Brandenburgs : ein Video Y1 - 1993 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Blumenstein, Oswald A1 - Bukowsky, Heinz A1 - Fischer, Franka A1 - Kapp, Ingo A1 - Knösche, Rüdiger A1 - Leinweber, Peter A1 - Portmann, Hans-Dieter A1 - Schachtzabel, Hartmut A1 - Schade, Wolfgang A1 - Schneider, Ingo A1 - Schubert, Rudolf T1 - Wenn Abwasser die Landschaft verändert ... : Fallstudie einer geoökologischen Komplexuntersuchung kontaminierter Geosysteme JF - Stoffdynamik in Geosystemen Y1 - 1995 VL - 1 PB - Loche CY - Berlin ER - TY - JOUR A1 - Berndt, Klaus-Peter T1 - Umweltforschung und Umweltbildung Y1 - 1997 UR - http://www.uni-potsdam.de/u/zfu/ub/putz97be.htm CY - Potsdam ER - TY - JOUR A1 - Wipper, Renate T1 - Ethologie und Umweltbildung N2 - Über Förderung der Fähigkeiten zur differenzierten und auch "verfremdeten" Wahrnehmung wollen Umweltbildungsaktivitäten die Aufmerksamkeit auf die lebende Natur lenken und den schonenden Umgang mit ihr fördern. In diesem Prozess lassen sich neue Medien als technische Hilfsmittel sinnvoll einsetzen, um Erkenntnisse anderer Wissenschaftsdisziplinen wie z.B. aus der Ethologie für unterschiedliche Adressaten aufzubereiten. Y1 - 1998 ER - TY - JOUR A1 - Wipper, Renate T1 - Umweltbildung im Cyperspace? N2 - Ausgehend von Zielstellungen der Umweltbildung wird das Leistungsspektrum des Internets für eine sinnvolle Nutzung der Umweltbildung hinterfragt. Y1 - 1999 ER -