TY - JOUR A1 - Neumann, Bettina A1 - Kielb, Patrycja A1 - Rustam, Lina A1 - Fischer, Anna A1 - Weidinger, Inez M. A1 - Wollenberger, Ulla T1 - Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide JF - ChemElectrChem N2 - The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO. KW - electrochemistry KW - enzyme catalysis KW - mesoporous materials KW - microperoxidase KW - spectroelectrochemistry Y1 - 2017 U6 - https://doi.org/10.1002/celc.201600776 SN - 2196-0216 VL - 4 IS - 4 SP - 913 EP - 919 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kielb, Patrycja A1 - Sezer, Murat A1 - Katz, Sagie A1 - Lopez, Francesca A1 - Schulz, Christopher A1 - Gorton, Lo A1 - Ludwig, Roland A1 - Wollenberger, Ursula A1 - Zebger, Ingo A1 - Weidinger, Inez M. T1 - Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Cellobiose dehydrogenase catalyzes the oxidation of various carbohydrates and is considered as a possible anode catalyst in biofuel cells. It has been shown that the catalytic performance of this enzyme immobilized on electrodes can be increased by presence of calcium ions. To get insight into the Ca2+-induced changes in the immobilized enzyme we employ surface-enhanced vibrational (SERR and SEIRA) spectroscopy together with electrochemistry. Upon addition of Ca2+ ions electrochemical measurements show a shift of the catalytic turnover signal to more negative potentials while SERR measurements reveal an offset between the potential of heme reduction and catalytic current. Comparing SERR and SEIRA data we propose that binding of Ca2+ to the heme induces protein reorientation in a way that the electron transfer pathway of the catalytic FAD center to the electrode can bypass the heme cofactor, resulting in catalytic activity at more negative potentials. KW - cellobiose dehydrogenase KW - electron transfer KW - enzyme catalysis KW - spectroelectrochemistry KW - surface-enhanced vibrational spectroscopy Y1 - 2015 U6 - https://doi.org/10.1002/cphc.201500112 SN - 1439-4235 SN - 1439-7641 VL - 16 IS - 9 SP - 1960 EP - 1968 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Albrecht, Steve A1 - Vandewal, Koen A1 - Tumbleston, John R. A1 - Fischer, Florian S. U. A1 - Douglas, Jessica D. A1 - Frechet, Jean M. J. A1 - Ludwigs, Sabine A1 - Ade, Harald W. A1 - Salleo, Alberto A1 - Neher, Dieter T1 - On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells JF - Advanced materials KW - organic solar cells KW - charge generation KW - geminate recombination KW - charge transfer states KW - driving force KW - excess energy KW - morphology KW - spectroelectrochemistry Y1 - 2014 U6 - https://doi.org/10.1002/adma.201305283 SN - 0935-9648 SN - 1521-4095 VL - 26 IS - 16 SP - 2533 EP - 2539 PB - Wiley-VCH CY - Weinheim ER -