TY - JOUR A1 - Reinicke, Stefan A1 - Rees, Huw C. A1 - Espeel, Pieter A1 - Vanparijs, Nane A1 - Bisterfeld, Carolin A1 - Dick, Markus A1 - Rosencrantz, Ruben R. A1 - Brezesinski, Gerald A1 - de Geest, Bruno G. A1 - Du Prez, Filip E. A1 - Pietruszka, Jörg A1 - Böker, Alexander T1 - Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique JF - ACS applied materials & interfaces N2 - A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided. KW - Langmuir-Schaefer KW - enzyme immobilization KW - 2-deoxy-D-ribose-5-phosphate aldolase KW - polymeric thin film KW - poly(N-isopropylacrylamide) KW - thiolactone Y1 - 2017 U6 - https://doi.org/10.1021/acsami.6b13632 SN - 1944-8244 VL - 9 SP - 8317 EP - 8326 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Werner, Peter A1 - Münzberg, Marvin A1 - Hass, Roland A1 - Reich, Oliver T1 - Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) microgel particles suspended in water has been investigated in situ as a function of heating and cooling rate with four optical process analytical technologies (PAT), sensitive to structural changes of the polymer. Photon Density Wave (PDW) spectroscopy, Focused Beam Reflectance Measurements (FBRM), turbidity measurements, and Particle Vision Microscope (PVM) measurements are found to be powerful tools for the monitoring of the temperature-dependent transition of such thermo-responsive polymers. These in-line technologies allow for monitoring of either the reduced scattering coefficient and the absorption coefficient, the chord length distribution, the reflected intensities, or the relative backscatter index via in-process imaging, respectively. Varying heating and cooling rates result in rate-dependent lower critical solution temperatures (LCST), with different impact of cooling and heating. Particularly, the data obtained by PDW spectroscopy can be used to estimate the thermodynamic transition temperature of PNIPAM for infinitesimal heating or cooling rates. In addition, an inverse hysteresis and a reversible building of micrometer-sized agglomerates are observed for the PNIPAM transition process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 944 KW - poly(N-isopropylacrylamide) KW - Photon Density Wave spectroscopy KW - Focused Beam Reflectance Measurement KW - turbidity measurement KW - Particle Vision Microscope measurement KW - rate-dependent lower critical solution temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431162 SN - 1866-8372 IS - 944 SP - 807 EP - 819 ER - TY - THES A1 - Tan, Irene T1 - Towards greener stationary phases : thermoresponsive and carbonaceous chromatographic supports T1 - Zu grüner Separation : thermoresponsive und kohlenstoffhaltige chromatographische Trägermaterialien N2 - Polymers which are sensitive towards external physical, chemical and electrical stimuli are termed as ‘intelligent materials’ and are widely used in medical and engineering applications. Presently, polymers which can undergo a physical change when heat is applied at a certain temperature (cloud point) in water are well-studied for this property in areas of separation chemistry, gene and drug delivery and as surface modifiers. One example of such a polymer is the poly (N-isopropylacrylamide) PNIPAAM, where it is dissolved well in water below 32 oC, while by increasing the temperature further leads to its precipitation. In this work, an alternative polymer poly (2-(2-methoxy ethoxy)ethyl methacrylate-co- oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) is studied due to its biocompatibility and the ability to vary its cloud points in water. When a layer of temperature responsive polymer was attached to a single continuous porous piece of silica-based material known as a monolith, the thermoresponsive characteristic was transferred to the column surfaces. The hybrid material was demonstrated to act as a simple temperature ‘switch’ in the separation of a mixture of five steroids under water. Different analytes were observed to be separated under varying column temperatures. Furthermore, more complex biochemical compounds such as proteins were also tested for separation. The importance of this work is attributed to separation processes utilizing environmentally friendly conditions, since harsh chemical environments conventionally used to resolve biocompounds could cause their biological activities to be rendered inactive. N2 - Polymere, welche empfindlich gegenüber externen physikalischen, chemischen und elektrischen Einflüssen sind, werden „intelligente Materialien“ genannt. Diese werden weitverbreitet in medizinischen und technischen Anwendungen eingesetzt. Auf diesem Gebiet ausführlich erforschte Materialien sind Polymere, welche durch Hitze bei einer bestimmten Temperatur (Trübungspunkt) eine physikalische Veränderung eingehen können, genannt thermoresponsive Polymere. Eingesetzt werden diese z.B. in chromatographischen Trennverfahren, in Gen- und Wirkstofftransport Vorgängen und zur Oberflächenmodifikation. Ein Beispiel für so ein Polymer ist das poly(N-isopropylacrylamide) PNIPAAM, welches unter 32 °C in Wasser gelöst vorliegt und mit Erhöhung der Temperatur als Niederschlag ausfällt. In dieser Arbeit wurde ein alternatives Polymer, das poly(2-(2-methoxyethoxy)ethylmethacrylate-co-oligo(ethyleneglycol) methacrylate) (P(MEO2MA-co-OEGMA)), untersucht, in Bezug auf Biokompatibilität und der Änderung des Trübungspunktes in Wasser. Wenn eine Schicht eines temperaturempfindlichen Polymers auf einen Monolithen (einteiliger, poröser und auf Silika-basierendes Material) aufgebracht wird, werden die thermoresponsiven Eigenschaften auf die Oberfläche dieses Monolithen übertragen. Der Monolith dient hier als Säule in einer HPLC-Anlage. Es wurde gezeigt, dass das Hybrid-Material als einfacher „Temperaturschalter“ in der Trennung von fünf verschiedenen Steroiden in Wasser agieren kann. Untersucht wurde die Separation verschiedener Analyten mit dem Variieren der Säulentemperatur. Zusätzlich wurden mehr komplexe biochemische Stoffe, wie Proteine, getestet. Die Bedeutung dieser Arbeit ist zurückzuführen auf Separationsprozesse, welche umweltfreundlichen Bedingungen nutzen, da die rauen chemischen Bedingungen in konventionellen Separationsprozessen die biologische Inaktivität der Verbindungen zur Folge haben können. Der zweite Teil der Arbeit beschäftigte sich mit der Entwicklung eines alternativen Trägermaterials als Ersatz zu den Silika-basierende Trennungssäulen. Kohlenstoffmaterialien sind aufgrund ihrer ausgezeichneten mechanischen Härte und chemischen Stabilität eine vielversprechend Alternative. Die Synthese von Kohlenstoffkugeln als Trägermaterial kann als „grüner“ Prozess in meiner Arbeit angesehen werden, da milde Synthesebedingungen in purem Wasser verwendet wurden. Die Leistungsfähigkeit des Materials wurde mit einer Serie von Separationsreaktionen gezeigt. KW - thermoresponsive KW - poly(N-isopropylacrylamide) KW - oligo(ethyleneglycol) KW - Monolith KW - Chromatographie KW - thermoresponsive KW - poly(N-isopropyl acrylamide) KW - oligo(ethylene glycol) KW - monolith KW - chromatography Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53130 ER -