TY - JOUR A1 - Speller, Camilla A1 - van den Hurk, Youri A1 - Charpentier, Anne A1 - Rodrigues, Ana A1 - Gardeisen, Armelle A1 - Wilkens, Barbara A1 - McGrath, Krista A1 - Rowsell, Keri A1 - Spindler, Luke A1 - Collins, Matthew J. A1 - Hofreiter, Michael T1 - Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans JF - Philosophical transactions of the Royal Society of London : B, Biological sciences KW - ancient DNA KW - archaeozoology KW - cetaceans KW - collagen peptide mass fingerprinting KW - species identification KW - zooarchaeology by mass spectrometry Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0332 SN - 0962-8436 SN - 1471-2970 VL - 371 PB - Royal Society CY - London ER - TY - JOUR A1 - González-Fortes, Gloria M. A1 - Kolbe, Ben A1 - Fernandes, Daniel A1 - Meleg, Ioana N. A1 - Garcia-Vazquez, Ana A1 - Pinto-Llona, Ana C. A1 - Constantin, Silviu A1 - de Torres, Trino J. A1 - Ortiz, Jose E. A1 - Frischauf, Christine A1 - Rabeder, Gernot A1 - Hofreiter, Michael A1 - Barlow, Axel T1 - Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears JF - Molecular ecology N2 - Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago. KW - ancient DNA KW - extinction KW - homing KW - sociality KW - Ursus arctos KW - Ursus spelaeus Y1 - 2016 U6 - https://doi.org/10.1111/mec.13800 SN - 0962-1083 SN - 1365-294X VL - 25 SP - 4907 EP - 4918 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Wutke, Saskia T1 - Tracing Changes in Space and Time BT - Paternal Diversity and Phenotypic Traits during Horse Domestication N2 - The horse is a fascinating animal symbolizing power, beauty, strength and grace. Among all the animal species domesticated the horse had the largest impact on the course of human history due to its importance for warfare and transportation. Studying the process of horse domestication contributes to the knowledge about the history of horses and even of our own species. Research based on molecular methods has increasingly focused on the genetic basis of horse domestication. Mitochondrial DNA (mtDNA) analyses of modern and ancient horses detected immense maternal diversity, probably due to many mares that contributed to the domestic population. However, mtDNA does not provide an informative phylogeographic structure. In contrast, Y chromosome analyses displayed almost complete uniformity in modern stallions but relatively high diversity in a few ancient horses. Further molecular markers that seem to be well suited to infer the domestication history of horses or genetic and phenotypic changes during this process are loci associated with phenotypic traits. This doctoral thesis consists of three different parts for which I analyzed various single nucleotide polymorphisms (SNPs) associated with coat color, locomotion or Y chromosomal variation of horses. These SNPs were genotyped in 350 ancient horses from the Chalcolithic (5,000 BC) to the Middle Ages (11th century). The distribution of the samples ranges from China to the Iberian Peninsula and Iceland. By applying multiplexed next-generation sequencing (NGS) I sequenced short amplicons covering the relevant positions: i) eight coat-color-associated mutations in six genes to deduce the coat color phenotype; ii) the so-called ’Gait-keeper’ SNP in the DMRT3 gene to screen for the ability to amble; iii) 16 SNPs previously detected in ancient horses to infer the corresponding haplotype. Based on these data I investigated the occurrence and frequencies of alleles underlying the respective phenotypes as well as Y chromosome haplotypes at different times and regions. Also, selection coefficients for several Y chromosome lineages or phenotypes were estimated. Concerning coat color differences in ancient horses my work constitutes the most comprehensive study to date. I detected an increase of chestnut horses in the Middle Ages as well as differential selection for spotted and solid phenotypes over time which reflects changing human preferences. With regard to ambling horses, the corresponding allele was present in medieval English and Icelandic horses. Based on these results I argue that Norse settlers, who frequently invaded parts of Britain, brought ambling individuals to Iceland from the British Isles which can be regarded the origin of this trait. Moreover, these settlers appear to have selected for ambling in Icelandic horses. Relating to the third trait, the paternal diversity, these findings represent the largest ancient dataset of Y chromosome variation in non-humans. I proved the existence of several Y chromosome haplotypes in early domestic horses. The decline of Y chromosome variation coincides with the movement of nomadic peoples from the Eurasian steppes and later with different breeding practices in the Roman period. In conclusion, positive selection was estimated for several phenotypes/lineages in different regions or times which indicates that these were preferred by humans. Furthermore, I could successfully infer the distribution and dispersal of horses in association with human movements and actions. Thereby, a better understanding of the influence of people on the changing appearance and genetic diversity of domestic horses could be gained. My results also emphasize the close relationship of ancient genetics and archeology or history and that only in combination well-founded conclusions can be reached. KW - ancient DNA KW - domestication KW - horse KW - equus caballus KW - locomotion KW - Y chromosome KW - coat colour Y1 - 2016 ER -