TY - THES A1 - Braun, Max T1 - Heterogeneous Catalysis for the Conversion of Fructose to Chemicals and Fuel in a Continuous Flow Process T1 - Umsetzung von Fruktose zu Chemikalien und Treibstoff mittels heterogener Katalysatoren in einem kontinuierlichen Prozess N2 - Die Umsetzung von Zucker (Kohlenhydrate) in einem kontinuierlichen Prozess eröffnet Möglichkeiten der Synthese diverser Chemikalien und Treibstoff aus erneuerbaren Ressourcen, welche heute überwiegend aus fossilen Quellen stammen. Passend zum Konzept der Bioraffinerie und der „grünen Chemie“, liegt der Fokus dieser Arbeit auf der Umsetzung von in Ethanol gelöster Fruktose in einem kontinuierlichen Verfahren, mit Hilfe eigens entwickelter heterogener Katalysatoren. Die Dehydratisierung von Fruktose wird mit einem heterogenen Säurekatalysator realisiert, während die Folgeprodukte mittels einer Hydrodesoxygenierung umgesetzt werden. Für den zweiten Schritt kommen Metallkatalysatoren auf Basis von Nickel und Wolframcarbid (WC) zum Einsatz, wodurch der Einsatz teurer Edelmetalle vermieden werden kann. Hauptprodukte des zweistufigen Verfahrens sind 2,5-Dimethylfuran (DMF) und Ethyllevulinat (EL). Beide Moleküle sind vielversprechende alternative Treibstoffe, bzw. können gebräuchlichen Treibstoffen beigemischt werden, um deren Einsatz zu reduzieren und schrittweise zu substituieren. Alternativ können die Zwischenprodukte der Dehydratisierung, sowie DMF und EL weiter zu Chemikalien umgesetzt werden, welche in der Polymersynthese, als Lösungsmittel oder als Grundchemikalien eingesetzt werden können. Die Entwicklung der jeweiligen Katalysatoren für Dehydratisierungs- und Hydrodesoxygenierungsreaktionen erfolgt auf Basis von karbonisierter Biomasse, sowie Wolframcarbid. Die jeweiligen Reaktivitäten werden durch Standardreaktionen getestet, wobei sich Wolframcarbid in Nanopartikelform, in Kombination mit Wasserstoff als sehr aktiv erwiesen hat. Der selbst entwickelte aktivierte Kohlenstoff, das kommerzielle Amberlyst 15, sowie Wolframcarbid mit zusätzlichen Nickel-Nanopartikeln werden für weiterführende Reaktionen in einem kontinuierlichen Prozess herangezogen und kombiniert. Um den Umsatz von Fruktose zu DMF in einer „zwei Reaktoren Anlage“ zu ermöglichen, wird eine Erweiterung eines kommerziellen Reaktorsystems um einen weiteren Reaktor vorgenommen. Die Verweilzeit in der Reaktoranlage beträgt somit ca. 14 Minuten, wobei 11 Minuten auf die erste Säule (Dehydratisierung) und 3 Minuten auf die zweite Säule (Hydrodesoxygenierung) entfallen. In diesem kontinuierlichen und zweistufigen System lassen sich Ausbeuten von 38.5 % DMF und 47 % EL erzielen. Ein kontinuierlicher Lauf von sieben Stunden zeigt die Stabilität der eingesetzten Katalysatoren, auch wenn eine geringe Deaktivierung des Dehydratisierungskatalysators beobachtet werden kann. Der Ni@WC Katalysator zeigte hingegen keine Abnahme der Nickel Konzentration und somit kommt es zu keiner Auswaschung des Metalls. Das gebildete EL wurde hingegen nicht umgesetzt und verbleibt unverändert in Lösung. Das zweistufige System wurde schließlich in einem Mischkatalysatorsystem kombiniert, wobei auf aktivierten und sulfonierten Kohlenstoff zurückgegriffen wurde. Dieser zeigte bereits eine Transferhydrodesoxygenierungsaktivität. Diese Beobachtung ist deshalb bemerkenswert, da erst seit kurzem bekannt ist, dass Graphenstrukturen an sich katalytisch aktiv sein können. Um diese Aktivität weiter zu steigern, wurde der aktivierte Kohlenstoff mit 10 wt% Ni@WC gemischt, sodass beide Katalysatoren in einer Säule vorliegen. Die ursprünglichen 2 % DMF Ausbeute mit reinem aktivierten Kohlenstoff können somit auf 12 % gesteigert werden, da das Folgeprodukt EL hierbei vermieden wird und das Zwischenprodukt „HMF Derivat“ direkt zu DMF weiter reagieren kann. Dieses Ergebnis zeigt das Potential der „ein Reaktor Umsetzung“, weshalb eine kontinuierliche Durchflussreaktoranlage im Litermaßstab als Scale-Up des vorhergehenden Labormaßstabs realisiert wurde. Der 800 mm x 28.5 mm Reaktor bedient eine maximale Flussrate von 50 mL min-1, Drücke von 100 bar und Temperaturen bis zu 500 °C. N2 - The valorization of carbohydrates is one of the most promising fields in green chemistry, as it enables to produce bulk chemicals and fuels out of renewable and abundant resources, instead of further exploiting fossil feedstocks. The focus in this thesis is the conversion of fructose, using dehydration and hydrodeoxygenation reactions. The main goal is to find an easy continuous process, including the solubility of the sugar in a green solvent, the conversion over a solid acid as well as over a metal@tungsten carbide catalyst. At the beginning of this thesis, solid acid catalysts are synthesized by using carbohydrate material like glucose and starch at high temperatures (up to 600 °C). Additionally a third carbon is synthesized, using an activation method based on Ca(OH)2. After carbonization and further sulfonation, using fuming sulfuric acid, the three resulting catalysts are characterized together with sulfonated carbon black and Amberlyst 15 as references. In order to test all solid acid catalysts in reaction, a 250 mm x 4.6 mm stainless steel column is used as a fixed-bed continuous reactor. The temperature (110 °C to 250 °C) and residence time (2 to 30 minutes) is varied, and a direct relationship between contact time and selectivity is determined. The reaction mechanism, as well as the product distribution is showing a dehydration step of fructose towards 5-hydroxymethylfurfural (HMF). These furan-ring molecules are considered as “sleeping giants”, due to the possibility of using them as fuel, but also for upgrading them to chemicals like terephthalic acid or p-xylene. Consecutive reactions are producing levulinic acid, as well as condensation products with ethanol and formic acid. The activated carbon is additionally showing a 2 % yield of 2,5-Dimethylfuran (DMF) production, pointing towards the extraordinary properties of this catalyst. Without a metal catalyst present, what is normally necessary for hydrogenation reactions, a transferhydrogenation (with formic acid) is observed. The active catalyst was therefore carbon itself, what activated the hydrogen on its surface. This phenomenon was just very rarely observed so far. Expensive noble metals are the material of choice, when it comes to hydrogenation reactions nowadays and cheaper alternatives are necessary. By postulating a similar electronic structure of tungsten carbide (WC) to platinum by Lewy and Boudart, research is focusing on the replacement of Pt. The production of nano-sized tungsten carbide particles (7.5 ± 2.5 nm, 70 m2 g-1) is enabled by the so called “urea glass route” and its catalytic performances are compared to commercial material. It is shown, that the activity is strongly dependent on the size of the particles as well as the surface area. Nano-sized tungsten carbide is showing activity for hydrogenation reactions under mild conditions (maximum 150 °C, 30 bar). This material therefore opens up new possibilities for replacing the rare and expensive platinum with tungsten carbide based catalysts. Additionally different metal nanoparticles of palladium, copper and nickel are deposited on top of WC to further promote its reactivity. The nickel nanoparticles are strongly connected to WC and showed the best activity as well as selectivity for upgrading HMF with hydrodeoxygenation. The Ni@WC is not leaching and is showing very good hydrodeoxygenation properties with DMF yields up to 90 percent. Copper@WC is not showing good activity and palladium@WC enables undesired consecutive reactions, hydrogenating the furan ring system. In order to enable the upgrade of fructose to DMF directly in a continuous system, the current H CUBE Pro TM hydrogenation system is customized with a second reaction column. A 250 mm x 4.6 mm stainless steel reactor column is connected ahead of the hydrogen insertion, enabling the dehydration of fructose to HMF derivatives, before pumping these products into the second column for hydrogenation. The overall residence time in the two column reactor system is 14 minutes. The overall results are an almost full conversion with a yield of 38.5 % DMF and 47 % yield of EL. The main disadvantage is the formation of higher mass products, so called humins, which start depositing on top of the catalysts, blocking their active sites. In general it can be stated, that a two column system goes along with a higher investment as well as more maintenance costs, compared to a one column catalytic approach. To develop a catalyst, which is on the one hand able to dehydrate as well as hydrodeoxygenate the reactants, is aimed for at the last part of the thesis. The activated carbon however shows already activity for hydrodeoxygenation without any metal present and offers itself therefore as an alternative to overcome the temperature instability of Amberlyst 15 (max. 120 °C) for a combined DMF production directly from fructose. The activity for the upgrade to DMF is increased from 2 % to 12 % DMF yield in one mixed continuous column. In order to scale up the entire one column approach, an 800 mm x 28.5 mm inner diameter column was planned and manufactured. The system is scaled up and assembled, whereas this flow reactor system is able to be run with 50 mL min-1 maximum flow rate, to stand a pressure of maximum 100 bar and be heated to around 500 °C. The tubing and connections, as well as the used devices are planned according to be safe and easy in use. The scaled-up approach offers a reaction column 120 times bigger (510 ml) then the first extension of the commercial system. This further extension offers the possibility of ranging between 1 and 1000 mL min-1, making it possible to use the approach in pilot plant applications. KW - Biorefinery KW - Catalysis KW - Hydroxymethylfurfural KW - Upgrade of Fructose KW - Bioraffinerie KW - Katalyse KW - Hydroxymethylfurfural KW - Aufarbeitung von Fruktose Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410370 ER - TY - THES A1 - Kollock, Ronny T1 - Humane Alkoholdehydrogenasen und Aldehyddehydrogenasen : Bedeutung für den Metabolismus von Methylpyrenderivaten und von 5-(Hydroxymethyl)-2-furfural T1 - Human alcohol dehydrogenases and aldehyde dehydrogenases : Importance for the metabolism of methylpyrene derivatives and of 5-(hydroxymethyl)-2-furfural N2 - Alkylierte polyzyklische aromatische Kohlenwasserstoffe (alk-PAK) kommen zusammen mit rein aromatischen polyzyklischen Kohlenwasserstoffen u.a. im Zigarettenrauch, Dieselabgasen sowie einigen Lebensmitteln (z.B. Freilandgemüse, planzliche Öle und Fette) vor. Benzylische Hydroxylierung und nachfolgende Sulfokonjugation ist ein wichtiger Bioaktivierungsweg für einige alk-PAK. Oxidation der benzylischen Alkohole durch Alkoholdehydrogenasen (ADH) und Aldehyddehydrogenasen (ALDH) zur Carbonsäure könnte einen wichtigen Detoxifizierungsweg in Konkurrenz zur Aktivierung durch Sulfotransferasen (SULT) darstellen, was für 1-Hydroxymethylpyren in der Ratte bereits gezeigt wurde (Ma, L., Kuhlow, A. & Glatt, H. (2002). Polycyclic Aromat Compnds 22, 933-946). Durch Hemmung der ADH und/oder ALDH ist eine verstärkte Aktivierung zu erwarten, wie in der besagten Studie ebenfalls nachgewiesen wurde. Insbesondere Ethanol kommt in diesem Zusammenhang eine Rolle als möglicher Risikofaktor für alk-PAK induzierte Kanzerogenese zu. Menschen konsumieren häufig große Mengen Ethanol und oft besteht eine Koexposition mit alk-PAK (z.B. durch Rauchen). Ähnliches gilt für 5-(Hydroxymethyl)-2-furfural (HMF), einem Pyrolyseprodukt reduzierender Zucker, dem gegenüber Menschen in recht hohen Mengen exponiert sind. Auch bei HMF steht der ADH- und ALDH-vermittelte oxidative Metabolismus in Konkurrenz zu einer Aktivierung durch Sulfokonjugation. Um die Bedeutung humaner ADH und ALDH im Metabolismus von alk-PAK und von HMF aufzuklären, wurden alle bekannten humanen ADH sowie die humanen ALDH2 und 3A1 (aus theoretischen Überlegungen heraus die vielversprechendsten Formen) für kinetische Analysen in Bakterien exprimiert. Als Enzymquelle dienten zytosolische Präparationen und durch Anionenaustauschchromatographie partiell gereinigte Enzyme. In der vorliegenden Arbeit wurde nachgewiesen, dass primäre benzylische Alkohole von Methyl- und Dimethylpyrenen gute Substrate humaner ADH sind. Sekundäre benzylische Alkohole und benzylische Alkohole von alk-PAK mit größerem Kohlenwasserstoffgrundgerüst erwiesen sich dagegen als schlechte Substrate. Vier Formen (ADH1C, 2, 3 und 4) wurden näher analysiert. Dazu wurden sie partiell gereinigt, primär um die störende endogene Bakterien-ADH zu eliminieren. Alle untersuchten ADH waren in der Lage Pyrenylmethanole zu oxidieren. Insbesondere ADH2 katalysierte die Oxidation der Pyrenylmethanole effizient, aber auch für ADH1C und 4 waren die Pyrenylmethanole gute Substrate. ADH3 oxidierte die Pyrenylmethanole mit geringer katalytischer Effizienz. Die Reduktion der entsprechenden Pyrenaldehyde durch ADH1C, 2 und 4 wurde mit noch höherer Effizienz katalysiert als die Oxidation der Pyrenylmethanole, was die Bedeutung von ALDH für die effiziente Detoxifizierung dieser Verbindungen unterstreicht. In einer an diese Arbeit angelehnten Diplomarbeit (Rost, K. (2007). Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät) wurde auch tatsächlich gezeigt, dass humane ALDH2 aber auch ALDH3A1 in der Lage sind, die Pyrenaldehyde zu Pyrenylcarbonsäuren zu oxidieren. Die bestimmten kinetischen Parameter legen nahe, dass insbesondere ALDH2 von Bedeutung für die Detoxifizierung von Methyl- und Dimethylpyrenen ist. Schon allein auf Grund der an der Detoxifizierung beteiligten Enzyme ist Ethanolaufnahme bei Koexposition mit Pyrenderivaten als Risiokofaktor anzusehen. Es ist wahrscheinlich, dass Ethanol und, nach dessen Oxidation, Acetaldehyd als konkurrierende Substrate die ADH- und ALDH-katalysierte Oxidation von Pyrenylmethanolen bzw. Pyrenaldehyden inhibieren und somit zu einer verstärkten SULT-vermittelten Aktivierung der Pyrenylmethanole führen. In der Tat wurde eine effiziente Inhibition der ADH2-katalysierten Oxidation von 1-Hydroxymethylpyren und von 1-(Hydroxymethyl)-8-methylpyren durch physiologisch relevante Ethanolkonzentrationen nachgewiesen. Drei humane ADH (4, 2 und 3), die HMF effizient zum 2,5-Diformylfuran oxidieren können, wurden identifiziert. Durch ALDH-katalysierte Weiteroxidation dieser Substanz entsteht schließlich 2,5-Furandicarbonsäure, die nach HMF-Exposition auch tatsächlich im menschlichen Urin gefunden wurde (Jellum, E., Børresen, H. C. & Eldjarn, L. (1973). Clin Chim Acta 47, 191-201). Weiter wurde gezeigt, dass ALDH3A1, aber auch ALDH2 HMF effizient zur 5-(Hydroxymethyl)-2-furancarbonsäure (HMFA) oxidieren können, ein weiterer nachgewiesener HMF Metabolit in vivo. Dass die ADH-katalysierte Oxidation von HMFA und nachfolgende ALDH-katalysierte Oxidation zur Bildung von 2,5-Furandicarbonsäure einen nennenswerten Anteil beträgt, kann aufgrund der kinetischen Daten für HMFA als Substrat humaner ADH ausgeschlossen werden. Die beobachteten Enzymaktivitäten lassen den Schluss zu, dass Ethanolaufnahme zu einer Reduktion des oxidativen HMF Metabolismus führt und somit eine Aktivierung von HMF durch Sulfokonjugation begünstigt. N2 - Alkylated polycyclic aromatic hydrocabons (alk-PAH), together with purely aromatic PAH, are present e.g. in tobacco smoke, diesel exhausts and also in some foods (e.g. outdoor vegetables, vegetable oils). Benzylic hydroxylation and subsequent sulfo conjugation is an important metabolic activation pathway for some of these compounds. Nevertheless, oxidation of the benzylic alcohols by alcohol dehydrogenases (ADH) and subsequently by aldehyde dehydrogenases (ALDH) can compete with the sulfo conjugation. Therefore, this pathway is probably important in the detoxification as could be shown for the representative compound 1-hydroxymethylpyrene in the rat (Ma, L., Kuhlow, A. & Glatt, H. (2002). Polycyclic Aromat Compnds 22, 933-946). Inhibition of ADH and/or ALDH should increase bioactivation as indeed was shown for 1-hydroxymethylpyrene in this study. Particularly ethanol, a competing ADH substrate, is of high interest in this context. Humans often consume large quantities of ethanol and often they are coexposed to alk-PAH (e.g. due to tobacco smoking). Similar relationships can be considered for 5-(hydroxymethyl)-2-furfural (HMF), a common pyrolysate of reducing sugars with high exposure to humans. Oxidative metabolism of HMF by ADH and ALDH also competes with its bioactivation by sulfotransferases (SULT). To clarify the importance of human ADH and ALDH in the metabolism of alk-PAH and HMF, all known human ADH as well as human ALDH2 and 3A1 (the most promising forms according to theoretical considerations) were expressed in bacteria for kinetic anlalyses. Cytosolic preparations or enzymes partially purified by anion exchange chromatography were used as enzyme source. In the present study it was shown that primary benzylic alcohols of methyl- and dimethylpyrenes were good substrates for human ADH. However, secondary benzylic alcohols and benzylic alcohols derived from alk-PAH with a bulkier hydrocarbon skeletal were poor substrates for human ADH. The most promising forms (ADH1C, 2, 3 and 4) were partially purified and further analysed. The purification step was necessary to eliminate the bacterial ADH. Particularly ADH2 was efficient for oxidation of pyrenylmethanols, although ADH1C and 4 were relatively efficient too. ADH3 was also capable of oxidising the tested pyrenylmethanols but with low catalytic efficiency. The reduction of the corresponding pyrene aldehydes was catalysed by ADH1C, 2 and 4 even with higher efficiency than the oxidation of the pyrenylmethanols emphasising the importance of ALDH for the detoxification of these compounds. In a diploma work related to the present study (Rost, K. (2007). University of Potsdam, Mathematisch-Naturwissenschaftliche Fakultät) it was shown that human ALDH2, but also ALDH3A1, can oxidise pyrene aldehydes to pyrenylcarboxylic acids. Particularly ALDH2 efficiently catalyse these reactions and, therefore, is probably of importance for the detoxification of methyl- and dimethylpyrenes. Due to the enzymes involved ethanol consumption could be a risk factor for methyl- and dimethylpyrene induced damage in the case of coexposure to methyl- and dimethylpyrenes. It is probable that ethanol and, after its oxidation, acetaldehyde will inhibit the ADH- and ALDH-catalysed oxidation of pyrenylmethanols and pyrenealdehydes. Indeed, it was shown that ADH2 catalysed oxidation of 1-hydroxymethylpyrene and of 1-(hydroxymethyl)-8-methylpyrene was efficiently inhibited by physiologically attainable concentrations of ethanol. Three human ADHs (4, 2 and 3) that efficiently oxidise HMF to 2,5-diformylfuran were identified. Further oxidation by ALDH leads to 2,5-furandicarboxylic acid, which was found in human urine after exposure to HMF (Jellum, E., Børresen, H. C. & Eldjarn, L. (1973). Clin Chim Acta 47, 191-201). Moreover, it was shown that human ALDH3A1 and also ALDH2 efficiently oxidise HMF to 5-(hydroxymethyl)-2-furancarboxylic acid (HMFA), which was also found in human urine. That 2,5-furandicarboxylic acid can be formed in significant amounts by ADH-catalysed oxidation of HMFA and subsequent oxidation by ALDH could be ruled out due to the kinetic data with HMFA as a substrate for human ADH. Due to the enzymes involved it is probable that ethanol consumption will inhibit the oxidative metabolism of HMF and, therefore, will increase the sulfo conjugation of HMF. KW - Alkoholdehydrogenase KW - Aldehyddehydrogenase KW - Hydroxymethylpyren KW - Hydroxymethylfurfural KW - Ethanol KW - alcohol dehydrogenase KW - aldehyde dehydrogenase KW - hydroxymethylpyrene KW - hydroxymethylfurfural KW - ethanol Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15703 ER -