TY - THES A1 - Koç, Azize T1 - Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths T1 - Ultraschnelle Röntgenuntersuchungen des Nichtgleichgewichts der magnetischen und phononischen Systeme in schweren Seltenen Erden N2 - In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems. N2 - In dieser Dissertation wird die Relaxationsdynamik des Gitters und der magnetischen Ordnung der zwei schweren, seltenen Erden Dy und Gd nach der Anregung mit femtosekunden Laserpulsen beschrieben. Für diese Untersuchungen wurden dünne Schichten von Dy und Gd bei niedrigen Temperaturen in der antiferromagnetischen Phase von Dy und nahe der Raumtemperatur in der ferromagnetischen Phase von Gd gemessen. Es wurden zwei verschiedene Experimente mittels optischem Anrege- Röntgen Abfrageverfahren durchgeführt, die ultraschnelle Röntgenbeugung mit harten Röntgenstrahlen (UXRD) und die resonante weiche (elastische) Röntgenbeugung (RSXD). Letzteres Verfahren erlaubt es, direkt die Änderungen der helikalen, antiferromagnetischen Ordnung zu messen. Die Kombination beider Techniken ermöglicht es, die komplexe Wechselwirkung zwischen dem magnetischen und dem phononischen Subsystem zu untersuchen. KW - magnetostriction KW - time-resolved x-ray diffraction KW - resonant soft x-ray diffraction KW - magnetism KW - critical exponent KW - heat transport KW - dysprosium KW - gadolinium KW - rare-earth metals KW - non-equilibrium KW - dynamics KW - magnetic and phononic system KW - Magnetostriktion KW - zeitaufgelöste Röntgenbeugung KW - resonante weiche Röntgenbeugung KW - Magnetismus KW - kritischer Exponent KW - Wärmetransport KW - Dysprosium KW - Gadolinium KW - Metalle der seltenen Erden KW - Nichtgleichgewicht KW - Dynamik KW - magnetisches und phononisches System Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423282 ER - TY - THES A1 - Bleßmann, Daniela T1 - Der Einfluss der Dynamik auf die stratosphärische Ozonvariabilität über der Arktis im Frühwinter T1 - Dynamical influence on stratospheric ozone variability over the Arctic in early winter N2 - Der frühwinterliche Ozongehalt ist ein Indikator für den Ozongehalt im Spätwinter/Frühjahr. Jedoch weist dieser aufgrund von Absinkprozessen, chemisch bedingten Ozonabbau und Wellenaktivität von Jahr zu Jahr starke Schwankungen auf. Die vorliegende Arbeit zeigt, dass diese Variabilität weitestgehend auf dynamische Prozesse während der Wirbelbildungsphase des arktischen Polarwirbels zurückgeht. Ferner wird der bisher noch ausstehende Zusammenhang zwischen dem früh- und spätwinterlichen Ozongehalt bezüglich Dynamik und Chemie aufgezeigt. Für die Untersuchung des Zusammenhangs zwischen der im Polarwirbel eingeschlossenen Luftmassenzusammensetzung und Ozonmenge wurden Beobachtungsdaten von Satellitenmessinstrumenten und Ozonsonden sowie Modellsimulationen des Lagrangschen Chemie/Transportmodells ATLAS verwandt. Die über die Fläche (45–75°N) und Zeit (August-November) gemittelte Vertikalkomponente des Eliassen-Palm-Flussvektors durch die 100hPa-Fläche zeigt eine Verbindung zwischen der frühwinterlichen wirbelinneren Luftmassenzusammensetzung und der Wirbelbildungsphase auf. Diese ist jedoch nur für die untere Stratosphäre gültig, da die Vertikalkomponente die sich innerhalb der Stratosphäre ändernden Wellenausbreitungsbedingungen nicht erfasst. Für eine verbesserte Höhendarstellung des Signals wurde eine neue integrale auf der Wellenamplitude und dem Charney-Drazin-Kriterium basierende Größe definiert. Diese neue Größe verbindet die Wellenaktivität während der Wirbelbildungsphase sowohl mit der Luftmassenzusammensetzung im Polarwirbel als auch mit der Ozonverteilung über die Breite. Eine verstärkte Wellenaktivität führt zu mehr Luft aus niedrigeren ozonreichen Breiten im Polarwirbel. Aber im Herbst und Frühwinter zerstören chemische Prozesse, die das Ozon ins Gleichgewicht bringen, die interannuale wirbelinnere Ozonvariablität, die durch dynamische Prozesse während der arktischen Polarwirbelbildungsphase hervorgerufen wird. Eine Analyse in Hinblick auf den Fortbestand einer dynamisch induzierten Ozonanomalie bis in den Mittwinter ermöglicht eine Abschätzung des Einflusses dieser dynamischen Prozesse auf den arktischen Ozongehalt. Zu diesem Zweck wurden für den Winter 1999–2000 Modellläufe mit dem Lagrangesche Chemie/Transportmodell ATLAS gerechnet, die detaillierte Informationen über den Erhalt der künstlichen Ozonvariabilität hinsichtlich Zeit, Höhe und Breite liefern. Zusammengefasst, besteht die dynamisch induzierte Ozonvariabilität während der Wirbelbildungsphase länger im Inneren als im Äußeren des Polarwirbels und verliert oberhalb von 750K potentieller Temperatur ihre signifikante Wirkung auf die mittwinterliche Ozonvariabilität. In darunterliegenden Höhenbereichen ist der Anteil an der ursprünglichen Störung groß, bis zu 90% auf der 450K. Innerhalb dieses Höhenbereiches üben die dynamischen Prozesse während der Wirbelbildungsphase einen entscheidenden Einfluss auf den Ozongehalt im Mittwinter aus. N2 - The ozone amount in early winter provides an indication of the ozone amount in late winter/early spring. The early winter amount is highly variable from year to year due to modification by subsidence, chemical loss and wave activity. This thesis shows that this variability is mainly caused by the dynamics during the Arctic polar vortex formation. Furthermore, it explains the still missing link between early and late winter ozone amount due to dynamics and chemistry. Observational ozone data from satellite based instruments, ozone probes and simulations are used for the investigation of the connection between the composition of the air and the ozone enclosed in the polar vortex. The simulations are calculated with the Lagrangian chemistry/transport model ATLAS. The over area (45–75°N) and time (August-November) averaged vertical component of the Eliassen-Palm flux at 100hPa points to a link between the early winter composition of the air enclosed in the polar vortex and the vortex formation phase. This is only valid for the lower stratosphere, because the component does not satisfy changing conditions for wave propagation throughout the stratosphere by itself. Due to this deficit a new integral quantity based on wave amplitude and properties of the Charney-Drazin criterion is defined to achieve an improvement with height. This new quantity connects the wave activity during vortex formation to the composition of air inside the vortex as well as the distribution of ozone over latitude. An enhanced wave activity leads to a higher proportion of ozone rich air from lower latitudes inside the polar vortex. But chemistry in autumn and early winter removes the interannual variability in the amount of ozone enclosed in the vortex induced by dynamical processes during the formation phase of the Artic polar vortex because ozone relaxes towards equilibrium. An estimation of how relevant these variable dynamical processes are for the Arctic winter ozone abundances is obtained by analysing which fraction of dynamically induced anomalies in ozone persists until mid winter. Model runs with the Lagrangian Chemistry-Transport-Model ATLAS for the winter 1999–2000 are used to assess the fate of ozone anomalies artificially introduced during the vortex formation phase. These runs provide detailed information about the persistence of the induced ozone variability over time, height and latitude. Overall, dynamically induced ozone variability from the vortex formation phase survives longer inside the polar vortex compared to outside and can not significantly contribute to mid-winter variability at levels above 750K potential temperature level. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450K potential temperature level. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in mid-winter. KW - Stratosphäre KW - Ozon KW - Variabilität KW - Dynamik KW - Chemie-Transport-Modell KW - stratosphere KW - ozone KW - variability KW - dynamics KW - chemistry-transport-model Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51394 ER - TY - THES A1 - Makuch, Martin T1 - Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes T1 - Circumplanetare Staubdynamik : Anwendung zu den Staubtori von Mars und den Enceladus Staubfontänen N2 - Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in general, containing a large fraction of dust or also the putative dust-tori surrounding the planet Mars. The dynamical life'' of such circumplanetary dust populations is the main subject of our study. In this thesis a general model of creation, dynamics and death'' of circumplanetary dust is developed. Endogenic and exogenic processes creating dust at atmosphereless bodies are presented. Then, we describe the main forces influencing the particle dynamics and study dynamical responses induced by stochastic fluctuations. In order to estimate the properties of steady-state population of considered dust complex, the grain mean lifetime as a result of a balance of dust creation, life'' and loss mechanisms is determined. The latter strongly depends on the surrounding environment, the particle properties and its dynamical history. The presented model can be readily applied to study any circumplanetary dust complex. As an example we study dynamics of two dust populations in the Solar system. First we explore the dynamics of particles, ejected from Martian moon Deimos by impacts of micrometeoroids, which should form a putative tori along the orbit of the moon. The long-term influence of indirect component of radiation pressure, the Poynting-Robertson drag gives rise in significant change of torus geometry. Furthermore, the action of radiation pressure on rotating non-spherical dust particles results in stochastic dispersion of initially confined ensemble of particles, which causes decrease of particle number densities and corresponding optical depth of the torus. Second, we investigate the dust dynamics in the vicinity of Saturnian moon Enceladus. During three flybys of the Cassini spacecraft with Enceladus, the on-board dust detector registered a micron-sized dust population around the moon. Surprisingly, the peak of the measured impact rate occurred 1 minute before the closest approach of the spacecraft to the moon. This asymmetry of the measured rate can be associated with locally enhanced dust production near Enceladus south pole. Other Cassini instruments also detected evidence of geophysical activity in the south polar region of the moon: high surface temperature and extended plumes of gas and dust leaving the surface. Comparison of our results with this in situ measurements reveals that the south polar ejecta may provide the dominant source of particles sustaining the Saturn's E ring. N2 - In unserem Sonnensystem befindet sich eine große Menge an Staub, der viele Informationen über unseren Kosmos enthält. Wird der Staub im System um den Planeten gebildet, bleibt er vorwiegend in dessen Nähe und bildet Staubhüllen, -tori oder -ringe um ihn. Ein faszinierendes Beispiel eines solchen Komplexes sind die Saturnringe, in denen von mikrometergroßen Partikeln bis zu hausgroßen Körpern alle Partikelgrößen vertreten sind. Weitere Beispiele sind Ringsysteme im Allgemeinen, sowie der vermutete Staubring um Mars. Das dynamische Verhalten einer solchen Staubpopulation ist Hauptthema dieser Dissertation. In dieser Arbeit wurde ein allgemeines Modell zur Erzeugung, Dynamik und Vernichtung von planetarem Staub entwickelt. Endogene und exogene Mechanismen zur Produktion von Staub an atmosphärenlosen Körpern werden vorgestellt. Desweiteren werden die wichtigsten Kräfte welche die Teilchendynamik beeinflussen, sowie die Auswirkung von stochastischen Fluktuationen untersucht. Die Lebenszeiten der Staubkörner als Bilanz zwischen Staubproduktion und -vernichtung werden bestimmt, um den stationären Zustand der Staubkonfiguration abzuschätzen. Die Lebenszeit des Staubes hängt stark von den Eigenschaften der Umgebung und der Teilchen sowie von deren dynamischer Vergangenheit ab. Das vorgestellte Modell kann auf alle planetaren Systeme angewandt werden. Als Beispiel wurden zwei Staubpopulationen in unserem Sonnensystem studiert. Zuerst wurde die Dynamik des Staubes untersucht, welcher durch Mikrometeorideneinschläge auf dem Marsmond Deimos produziert wird und die vermuteten Marstori erzeugt. Der Poynting-Robertson-Effekt, als indirekter Einfluss des Strahlungsdruckes, bewirkt eine signifikante Langzeitänderung der Torusgeometrie. Desweiteren verursacht der Strahlungsdruck eine stochastische Dispersion des nichtsphärischen Staubteilchenensembles, was eine Verringerung der Teilchenzahldichten beziehungsweise der entsprechenden optischen Tiefen im Torus bewirkt. Weiterhin wurde die Staubdynamik in der Umgebung des Saturnmondes Enceladus untersucht. Während des Vorbeifluges der Raumsonde Cassini registrierte der Staubdetektor eine Staubpopulation von mikrometergroßen Teilchen um den Mond. Überraschenderweise wurde die maximal registrierte Staubrate eine Minute vor der größten Annäherung an den Mond gemessen. Diese Asymmetrie der Messung kann, wie in dieser Arbeit demonstriert, mit einer lokalen Staubquelle am Südpol des Mondes erklärt werden. Andere Instrumente der Cassini - Sonde belegen die geophysikalische Aktivität der Südpolregion des Mondes in Form einer erhöhten Oberflächentemperatur und Fontänen von Gas und Staub an der Südpolumgebung. Der Vergleich der numerischen Simulationen mit den in - situ - Messungen zeigt, dass die Südpolquelle die voraussichtlich wichtigste Quelle von E-Ringteilchen ist. KW - Kosmischer Staub KW - Dynamik KW - Stochastik KW - Mars KW - Saturn KW - Cosmic Dust KW - Dynamics KW - Stochastics KW - Mars KW - Saturn Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14404 ER -