TY - JOUR A1 - Schmidt, Martin A1 - Jochheim, Hubert A1 - Kersebaum, Kurt-Christian A1 - Lischeid, Gunnar A1 - Nendel, Claas T1 - Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes - a review JF - Agricultural and forest meteorology N2 - Fragmentation of landscapes creates a transition zone in between natural habitats or different kinds of land use. In forested and agricultural landscapes with transition zones, microclimate and matter cycling are markedly altered. This probably accelerates and is intensified by global warming. However, there is no consensus on defining transition zones and quantifying relevant variables for microclimate and matter cycling across disciplines. This article is an attempt to a) revise definitions and offer a framework for quantitative ecologists, b) review the literature on microclimate and matter cycling in transition zones and c) summarise this information using meta-analysis to better understand bio-geochemical and bio-geophysical processes and their spatial extent in transition zones. We expect altered conditions in soils of transition zones to be 10-20 m with a maximum of 50 m, and 25-50 m for above-ground space with a maximum of 125 m. KW - Edge effects KW - Ecological boundaries KW - Matter cycling KW - Matter dynamics KW - Framework quantitative ecology KW - Ecotone hierarchy Y1 - 2016 U6 - https://doi.org/10.1016/j.agrformet.2016.10.022 SN - 0168-1923 SN - 1873-2240 VL - 232 SP - 659 EP - 671 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Lischeid, Gunnar A1 - Dietrich, Ottfried T1 - Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis JF - International Journal of Biometeorology N2 - This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area. KW - Rice yield KW - Climate variables KW - Linear regression KW - Support vector machine KW - NERICA Y1 - 2017 U6 - https://doi.org/10.1007/s00484-017-1454-6 SN - 0020-7128 SN - 1432-1254 VL - 62 IS - 3 SP - 459 EP - 469 PB - Springer CY - New York ER - TY - JOUR A1 - Wambura, Frank Joseph A1 - Dietrich, Ottfried A1 - Lischeid, Gunnar T1 - Evaluation of Spatio-Temporal Patterns of Remotely Sensed Evapotranspiration to Infer Information about Hydrological Behaviour in a Data-Scarce Region JF - Water N2 - Information about the hydrological behaviour of a river basin prior to setting up, calibrating and validating a distributed hydrological model requires extensive datasets that are hardly available for many parts of the world due to insufficient monitoring networks. In this study, the focus was on prevailing spatio-temporal patterns of remotely sensed evapotranspiration (ET) that enabled conclusions to be drawn about the hydrological behaviour and spatial peculiarities of a river basin at rather high spatial resolution. The prevailing spatio-temporal patterns of ET were identified using a principal component analysis of a time series of 644 images of MODIS ET covering the Wami River basin (Tanzania) between the years 2000 and 2013. The time series of the loadings on the principal components were analysed for seasonality and significant long-term trends. The spatial patterns of principal component scores were tested for significant correlation with elevations and slopes, and for differences between different soil texture and land use classes. The results inferred that the temporal and spatial patterns of ET were related to those of preceding rainfalls. At the end of the dry season, high ET was maintained only in areas of shallow groundwater and in cloud forest nature reserves. A region of clear reduction of ET in the long-term was related to massive land use change. The results also confirmed that most soil texture and land use classes differed significantly. Moreover, ET was exceptionally high in natural forests and loam soil, and very low in bushland and sandy-loam soil. Clearly, this approach has shown great potential of publicly available remote sensing data in providing a sound basis for water resources management as well as for distributed hydrological models in data-scarce river basins at lower latitudes. KW - evapotranspiration KW - hydrological behaviour KW - land cover change KW - MODIS ET KW - principal component analysis KW - shallow groundwater Y1 - 2017 U6 - https://doi.org/10.3390/w9050333 SN - 2073-4441 VL - 9 SP - 297 EP - 315 PB - MDPI CY - Basel ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar T1 - Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa JF - Global and planetary change N2 - This study examines the characteristics of drought in the Volta River Basin (VRB), investigates the influence of drought on the streamflow, and projects the impacts of future climate change on the drought. A combination of observation data and regional climate simulations of past and future climates (1970-2013, 2046-2065, and 2081-2100) were analyzed for the study. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration (SPEI) were used to characterize drought while the Standardized Runoff Index (SRI) were used to quantify runoff. Results of the study show that the historical pattern of drought is generally consistent with previous studies over the Basin and most part of West Africa. RCA ensemble medians (RMED) give realistic simulations of drought characteristics and area extent over the Basin and the sub-catchments in the past climate. Generally, an increase in drought intensity and spatial extent are projected over VRB for SPEI and SPI, but the magnitude of increase is higher with SPEI than with SPI. Drought frequency (events per decade) may be magnified by a factor of 1.2, (2046-2065) to 1.6 (2081-2100) compared to the present day episodes in the basin. The coupling between streamflow and drought episodes was very strong (P < 0.05) for the 1-16-year band before the 1970 but showed strong correlation all through the time series period for the 4-8 -years band. Runoff was highly sensitive to precipitation in the VRB and a 2-3 month time lag was found between drought indices and streamflow in the Volta River Basin. Results of this study may guide policymakers in planning how to minimize the negative impacts of future climate change that could have consequences on agriculture, water resources and energy supply. KW - Drought indices KW - Water management KW - Climate change KW - Streamfiow KW - Volta Basin Y1 - 2017 U6 - https://doi.org/10.1016/j.gloplacha.2017.07.003 SN - 0921-8181 SN - 1872-6364 VL - 155 SP - 121 EP - 132 PB - Elsevier CY - Amsterdam ER -