TY - GEN A1 - Sparkes, Robert B. A1 - Hovius, Niels A1 - Galy, Albert A1 - Liu, James T. T1 - Survival of graphitized petrogenic organic carbon through multiple erosional cycles T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Graphite forms the endpoint for organic carbon metamorphism; it is extremely resilient to physical, biological and chemical degradation. Carbonaceous materials (CM) contained within sediments, collected across Taiwan and from the Gaoping submarine canyon, were analyzed using Raman spectroscopy to determine the crystallinity. This allowed the erosional and orogenic movements of petrogenic organic carbon (OCpetro) during the Taiwanese orogeny to be deduced. After automatically fitting and classifying spectra, the distribution of four groups of CM within the sediments provides evidence that many forms of OCpetro have survived at least one previous cycle of erosion, transport and burial before forming rocks in the Western Foothills of the island. There is extensive detrital graphite present in rocks that have not experienced high-grade metamorphism, and graphite flakes are also found in recently deposited marine sediments off Taiwan. The tectonic and geological history of the island shows that these graphite flakes must have survived at least three episodes of recycling. Therefore, transformation to graphite during burial and orogeny is a mechanism for stabilizing organic carbon over geological time, removing biospheric carbon from the active carbon cycle and protecting it from oxidation during future erosion events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1223 KW - graphite KW - organic carbon KW - orogeny KW - recycling KW - Raman spectroscopy KW - erosion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-533541 SN - 1866-8372 ER - TY - JOUR A1 - Couture, Nicole J. A1 - Irrgang, Anna Maria A1 - Pollard, Wayne A1 - Lantuit, Hugues A1 - Fritz, Michael T1 - Coastal erosion of permafrost soils along the yukon coastal plain and fluxes of organic carbon to the canadian beaufort sea JF - Journal of geophysical research : Biogeosciences N2 - Reducing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were reduced by 19% and sediment contents by 16%. The SOC content in a 1m(2) column of soil varied according to the height of the bluff, ranging from 30 to 662kg, with a mean value of 183kg. Forty-four per cent of the SOC was within the top 1m of soil and values varied based on surficial materials, ranging from 30 to 53kg C/m(3), with a mean of 41kg. Eighty per cent of the shoreline was erosive with a mean annual rate of change of -0.7m/yr. This resulted in a SOC flux per meter of shoreline of 132kg C/m/yr, and a total flux for the entire 282km of the Yukon coast of 35.5 x 10(6) kg C/yr (0.036 Tg C/yr). The mean flux of sediment per meter of shoreline was 5.3 x 10(3) kg/m/yr, with a total flux of 1,832 x 10(6)kg/yr (1.832 Tg/yr). Sedimentation rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where the overwhelming majority of organic carbon was of terrestrial origin. Plain Language Summary The oceans help slow the buildup of carbon dioxide (CO2) because they absorb much of this greenhouse gas. However, if carbon from other sources is added to the oceans, it can affect their ability to absorb atmospheric CO2. Our study examines the organic carbon added to the Canadian Beaufort Sea from eroding permafrost along the Yukon coast, a region quite vulnerable to erosion. Understanding carbon cycling in this area is important because environmental changes in the Arctic such as longer open water seasons, rising sea levels, and warmer air, water and soil temperatures are likely to increase coastal erosion and, thus, carbon fluxes to the sea. We measured the carbon in different types of permafrost soils and applied corrections to account for the volume taken up by various types of ground ice. By determining how quickly the shoreline is eroding, we assessed how much organic carbon is being transferred to the ocean each year. Our results show that 36 x 10(6) kg of carbon is added annually from this section of the coast. If we extrapolate these results to other coastal areas along the Canadian Beaufort Sea, the flux of organic carbon is nearly 3 times what was previously thought. KW - coastal erosion KW - organic carbon KW - ground ice KW - Yukon KW - Canadian Beaufort Sea Y1 - 2018 U6 - https://doi.org/10.1002/2017JG004166 SN - 2169-8953 SN - 2169-8961 VL - 123 IS - 2 SP - 406 EP - 422 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Morling, Karoline T1 - Import and decomposition of dissolved organic carbon in pre-dams of drinking water reservoirs T1 - Eintrag und Abbau von gelösten Kohlenstoffen in Vorsperren von Trinkwassertalsperren N2 - Dissolved organic carbon (DOC) depicts a key component in the aquatic carbon cycle as well as for drinking water production from surface waters. DOC concentrations increased in water bodies of the northern hemisphere in the last decades, posing ecological consequences and water quality problems. Within the pelagic zone of lakes and reservoirs, the DOC pool is greatly affected by biological activity as DOC is simultaneously produced and decomposed. This thesis aimed for a conceptual understanding of organic carbon cycling and DOC quality changes under differing hydrological and trophic conditions. Further, the occurrence of aquatic priming was investigated, which has been proposed as a potential process facilitating the microbial decomposition of stable allochthonous DOC within the pelagic zone. To study organic carbon cycling under different hydrological conditions, quantitative and qualitative investigations were carried out in three pre-dams of drinking water reservoirs exhibiting a gradient in DOC concentrations and trophic states. All pre-dams were mainly autotrophic in their epilimnia. Discharge and temperature were identified as the key factors regulating net production and respiration in the upper water layers of the pre-dams. Considerable high autochthonous production was observed during the summer season under higher trophic status and base flow conditions. Up to 30% of the total gained organic carbon was produced within the epilimnia. Consequently, this affected the DOC quality within the pre-dams over the year and enhanced characteristics of algae-derived DOC were observed during base flow in summer. Allochthonous derived DOC dominated at high discharges and oligotrophic conditions when production and respiration were low. These results underline that also small impoundments with typically low water residence times are hotspots of carbon cycling, significantly altering water quality in dependence of discharge conditions, temperature and trophic status. Further, it highlights that these factors need to be considered in future water management as increasing temperatures and altered precipitation patterns are predicted in the context of climate change. Under base flow conditions, heterotrophic bacteria preferentially utilized older DOC components with a conventional radiocarbon age of 195-395 years before present (i.e. before 1950). In contrast, younger carbon components (modern, i.e. produced after 1950) were mineralized following a storm flow event. This highlights that age and recalcitrance of DOC are independent from each other. To assess the ages of the microbially consumed DOC, a simplified method was developed to recover the respired CO2 from heterotrophic bacterioplankton for carbon isotope analyses (13C, 14C). The advantages of the method comprise the operation of replicate incubations at in-situ temperatures using standard laboratory equipment and thus enabling an application in a broad range of conditions. Aquatic priming was investigated in laboratory experiments during the microbial decomposition of two terrestrial DOC substrates (peat water and soil leachate). Thereby, natural phytoplankton served as a source of labile organic matter and the total DOC pool increased throughout the experiments due to exudation and cell lysis of the growing phytoplankton. A priming effect for both terrestrial DOC substrates was revealed via carbon isotope analysis and mixing models. Thereby, priming was more pronounced for the peat water than for the soil leachate. This indicates that the DOC source and the amount of the added labile organic matter might influence the magnitude of a priming effect. Additional analysis via high-resolution mass spectrometry revealed that oxidized, unsaturated compounds were more strongly decomposed under priming (i.e. in phytoplankton presence). Given the observed increase in DOC concentrations during the experiments, it can be concluded that aquatic priming is not easily detectable via net concentration changes alone and could be considered as a qualitative effect. The knowledge gained from this thesis contributes to the understanding of aquatic carbon cycling and demonstrated how DOC dynamics in freshwaters vary with hydrological, seasonal and trophic conditions. It further demonstrated that aquatic priming contributes to the microbial transformation of organic carbon and the observed decay of allochthonous DOC during transport in inland waters. N2 - Gelöster organischer Kohlenstoff (dissolved organic carbon, DOC) bildet nicht nur eine zentrale Komponente des aquatischen Kohlenstoffkreislaufs, sondern auch für die Gewinnung von Trinkwasser aus Oberflächengewässern. In den letzten Jahrzehnten stiegen die DOC-Konzentrationen in Gewässern der nördlichen Hemisphäre an und führen sowohl zu ökologischen Konsequenzen als auch zu Wasserqualitätsproblemen. Die Zusammensetzung des DOC im Pelagial von Seen und Talsperren wird erheblich durch biologische Aktivität beeinflusst, da DOC-Verbindungen gleichzeitig produziert und abgebaut werden. Im Fokus meiner Dissertation standen ein konzeptionelles Verständnis des organischen Kohlenstoffkreislaufs und die damit verbundenen Änderungen in der DOC-Qualität unter verschiedenen hydrologischen und trophischen Bedingungen. Weiterhin wurde das Auftreten eines aquatischen Priming-Effektes untersucht, welcher den mikrobiellen Abbau von stabilem allochthonem DOC im Pelagial fördern könnte. Quantitative und qualitative Untersuchungen wurden unter verschiedenen hydrologischen Bedingungen in drei Vorsperren von Trinkwassertalsperren durchgeführt, die einen Gradienten an DOC-Konzentrationen und Trophie aufwiesen. Alle Vorsperren waren im Epilimnion überwiegend autotroph. Abfluss und Temperatur wurden als Schlüsselfaktoren identifiziert, die Produktion und Respiration in den oberen Wasserschichten der Vorsperren regulieren. Eine vergleichsweise hohe autotrophe Produktion wurde während der Sommer-monate bei hoher Trophie und Basisabfluss beobachtet. Bis zu 30% des gesamten eingetragenen organischen Kohlenstoffes wurde im Epilimnion produziert. Dies beeinflusste die DOC-Qualität in den Vorsperren erheblich und es traten vermehrt Charakteristiken von algenbürtigem DOC unter Basisabfluss in den Sommermonaten auf. Allochthoner DOC dominierte bei hohen Abflüssen und unter oligotrophen Bedingungen, wenn Produktion und Respiration gering waren. Diese Ergebnisse unterstreichen, dass auch kleine Speicherbecken mit typischerweise kurzen Wasser-aufenthaltszeiten „Hotspots“ für Kohlenstoffumsetzung sind und die Wasserqualität signifikant in Abhängigkeit von Abflussbedingungen, Temperatur und Trophie verändern. Diese Faktoren sind auch für zukünftiges Wassermanagement bedeutsam, da steigende Temperaturen und veränderte Niederschläge im Zuge des Klimawandels prognostiziert werden. Unter Basisabfluss verwerteten heterotrophe Bakterien vorrangig ältere DOC-Komponenten mit einem konventionellen Radiokarbonalter von 195-395 Jahren B.P. („before present“, d. h. vor 1950). Im Gegensatz dazu wurden jüngere DOC-Komponenten (modern, d. h. nach 1950 produziert) nach einem Regenwetterzufluss abgebaut. Daraus lässt sich schließen, dass Alter und mikrobielle Verwertbarkeit des DOC voneinander unabhängig sind. Um das Alter des genutzten DOC zu bestimmen, wurde eine vereinfachte Methode entwickelt, die das Auffangen des bakteriell respirierten CO2 und eine anschließende Analyse der Kohlenstoffisotope (13C, 14C) ermöglicht. Die Vorteile der Methode liegen vor allem in der Verwendung von Replikaten, die bei in-situ Temperaturen inkubiert werden können und in der Nutzung von gängiger Laborausstattung. Dies ermöglicht eine Anwendung der Methode unter einer weiten Bandbreite von Bedingungen. Der aquatische Priming-Effekt wurde in Laborexperimenten während des mikrobiellen Abbaus von zwei terrestrischen DOC-Substraten (Moorwasser und Bodeneluat) untersucht. Phytoplankton diente als Quelle für labile organische Substanz und die DOC-Konzentrationen nahmen durch Exudation und Zelllysis des wachsenden Phytoplanktons während des Experimentes zu. Ein Priming-Effekt wurde für beide terrestrischen DOC-Substrate mittels Analyse von Kohlenstoffisotopen und Mischungsmodellen nachgewiesen, wobei der Priming-Effekt für das Moorwasser stärker ausgeprägt war als für das Bodeneluat. Analysen mittels hochauflösender Massenspektrometrie zeigten, dass verstärkt oxidierte und ungesättigte Verbindungen während des Primings (d. h. in Anwesenheit von Phytoplankton) abgebaut wurden. Aus den angestiegenen DOC-Konzentrationen während des Experimentes kann geschlussfolgert werden, dass ein aquatischer Priming-Effekt nicht allein über Konzentrationsänderungen nachweisbar ist und vielmehr als ein qualitativer Effekt betrachtet werden kann. Diese Arbeit trägt zum Verständnis des aquatischen Kohlenstoffkreislaufs bei und zeigt wie DOC-Dynamiken in Süßgewässern mit hydrologischen, saisonalen und trophischen Bedingungen variieren. Weiterhin wurde gezeigt, dass der aquatische Priming-Effekt zu dem mikrobiellen Umsatz von organischem Kohlenstoff und dem beobachteten Abbau von terrestrischen DOC während des Transportes in Binnengewässern beiträgt. KW - organic carbon KW - water reservoir KW - freshwater ecosystems KW - carbon isotopes KW - degradation KW - radiocarbon KW - autotrophy KW - net production KW - organic matter quality KW - high resolution mass spectrometry KW - microbial decomposition KW - organischer Kohlenstoff KW - Talsperre KW - Kohlenstoffisotope KW - Radiokarbon KW - Autotrophie KW - Nettoproduktion KW - organisches Material KW - hochauflösende Massenspektrometrie KW - mikrobieller Abbau KW - gelöster organischer Kohlenstoff Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-399110 ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Korup, Oliver A1 - Ulloa, Hector A1 - Iroume, Andres T1 - Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords JF - Global biogeochemical cycles N2 - Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaiten volcano in south-central Chile, where pyroclastic sediments covered >12km(2) of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered similar to 66,500+14,600/-14,500tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits (similar to 79,900+21,100/-16,900tC) or stored in active river channels (5,900-10,600tC). We estimate that bank erosion mobilized similar to 132,300(+21,700)/(-30,600)tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5mmyr(-1) since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources. Plain Language Summary Fjords and old-growth forests are important sinks of organic carbon. However, the role of volcanic eruptions in flushing organic carbon in fjord landscapes remains unexplored. Here we estimated how much forest vegetation and soils were lost to fjords following the 2008 eruption ofunknownChaiten volcano in south-central Chile. Pyroclastic sediments obliterated near-pristine temperateunknownrainforest, and the subsequent reworking of these sediments delivered in less than a decade similar to 66,000 tC of large wood to the mountain rivers, draining into the nearby Patagonian fjords. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits or stored in active riverunknownchannels. We estimate that similar to 130,000 tC of organic carbon-rich soil was lost to erosion, thus adding to the carbon loads. While much of the wood enters the long-shore drift in the fjord heads, the finerunknownfraction from eroded forest soils is likely to be buried in the fjords at rates that exceed regional estimates by an order of magnitude. We anticipate that these eruption-driven fluxes will remain elevated forunknownthe coming years and that Patagonian temperate rainforests episodically switch from carbon sinks to hitherto undocumented carbon sources if disturbed by explosive volcanic eruptions. KW - Chile KW - Patagonia KW - rainforest KW - volcanic eruption KW - organic carbon KW - biomass Y1 - 2017 U6 - https://doi.org/10.1002/2017GB005647 SN - 0886-6236 SN - 1944-9224 VL - 31 SP - 1626 EP - 1638 PB - American Geophysical Union CY - Washington ER -