TY - JOUR A1 - Zhang, Xiaorong A1 - Caserta, Giorgio A1 - Yarman, Aysu A1 - Supala, Eszter A1 - Tadjoung Waffo, Armel Franklin A1 - Wollenberger, Ulla A1 - Gyurcsanyi, Robert E. A1 - Zebger, Ingo A1 - Scheller, Frieder W. T1 - "Out of Pocket" protein binding BT - a dilemma of epitope imprinted polymers revealed for human hemoglobin JF - Chemosensors N2 - The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides. KW - Molecularly Imprinted Polymers KW - epitope imprinting KW - non-specific KW - binding KW - redox gating KW - SEIRA spectroelectrochemistry Y1 - 2021 U6 - https://doi.org/10.3390/chemosensors9060128 SN - 2227-9040 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Huang, T. A1 - Warsinke, Axel A1 - Koroljova-Skorobogatko, O. V. A1 - Makower, Alexander A1 - Kuwana, T. A1 - Scheller, Frieder W. T1 - A bienzyme carbon paste electrode for the sensitive detection of NADPH and the measurement of glucose-6- phosphate dehydrogenase Y1 - 1999 ER - TY - JOUR A1 - Gajovic, Nenad A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - A bienzyme electrode for L-malate based on a novel and general design Y1 - 1998 ER - TY - JOUR A1 - Eremenko, A. V. A1 - Makower, Alexander A1 - Bauer, Christian G. A1 - Kurochkin, I. N. A1 - Scheller, Frieder W. T1 - A bienzyme electrode for tyrosine containing peptides determination Y1 - 1997 ER - TY - JOUR A1 - Lettau, Kristian A1 - Warsinke, Axel A1 - Katterle, Martin A1 - Danielsson, Bengt A1 - Scheller, Frieder W. T1 - A bifunctional molecularly imprinted polymer (MIP): analysis of binding and catalysis by a thermistor N2 - Binding or catalysis? Both can be distinguished with a molecularly imprinted polymer (MIP) by the different patterns of heat generation. The catalytically active sites, like in the corresponding enzyme, generate a steady-state temperature increase. Thus, enzyme-like catalysis and antibody-analogue binding are analyzed simultaneously in a bifunctional MIP for the first time (see scheme). Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/26737/ U6 - https://doi.org/10.1002/anie.200601796 ER - TY - JOUR A1 - Chen, Ziping A1 - Warsinke, Axel A1 - Gajovic, Nenad A1 - Große, St. A1 - Hu, J. A1 - Kleber, H.-P. A1 - Scheller, Frieder W. T1 - A D-carnitine dehydrogenase electrode for the assessment of enantiomeric purity of L-carnitine preparations Y1 - 2000 ER - TY - JOUR A1 - Song, Min Ik A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - A method to detect superoxide radicals using teflon membrane and superoxide dismutase Y1 - 1995 ER - TY - JOUR A1 - Gajovic, Nenad A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - A novel multienzyme electrode for the determination of citrate Y1 - 1995 ER - TY - JOUR A1 - Teller, C. A1 - Halamek, Jan A1 - Makower, Alexander A1 - Fournier, Didier A1 - Schulze, H. A1 - Scheller, Frieder W. T1 - A piezoelectric sensor with propidium as a recognition element for cholinesterases N2 - A piezoelectric biosensor has been developed on the basis of the reversible acetylcholinesterase (AChE) inhibitor propidium. The propidium cation was bound to a 11-mercaptoundecanoic acid monolayer on gold-coated quartz crystals. The immobilization was done via activation of carboxyl groups by 1,3-dicyclohexylcarbodiimide (DCC). Different types of cholinesterases (acetyl- and butyryl-ChE) from different origins were tested for their binding ability towards the immobilized propidium. Binding Studies were performed in a flow system, Furthermore, catalytically active and organophosphate-inhibited enzyme were compared re-aiding their binding capability. The binding constants were derived by using an one to one binding model and a refined model also including rebinding effects. It was shown that organophosphorylation of the active site hardly influences the affinity of AChE towards propidium. Furthermore the propidium-based biosensor provides equal sensitivity as compared with piezolelectric sensors with immobilized paraoxon- an active site ligand of AChE. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2006 U6 - https://doi.org/10.1016/j.snb.2005.02.053 ER - TY - JOUR A1 - Gajovic, Nenad A1 - Habermüller, K. A1 - Warsinke, Axel A1 - Schuhmann, W. A1 - Scheller, Frieder W. T1 - A pyruvate oxidase electrode based on an electrochemically deposited redox polymer Y1 - 1999 ER -