TY - GEN A1 - Zwieback, Simon A1 - Kokelj, Steven V. A1 - Günther, Frank A1 - Boike, Julia A1 - Grosse, Guido A1 - Hajnsek, Irena T1 - Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of timescales. On sub-seasonal timescales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km(2)) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm day 1) despite the ample available energy, suggesting the widespread presence of early season insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm day 1), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August respectively. The observed temporal patterns are poorly related to slump characteristics like the headwall height. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 926 KW - ground-ice KW - Tandem-X KW - Northeast Siberia KW - thermal regime KW - Peel Plateau KW - permafrost KW - erosion KW - Island KW - delta KW - yedoma Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445688 SN - 1866-8372 IS - 926 SP - 549 EP - 564 ER - TY - JOUR A1 - Lenz, Josefine A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Anthony, Katey M. Walter A1 - Bobrov, Anatoly A1 - Wulf, Sabine A1 - Wetterich, Sebastian T1 - Mid-Wisconsin to Holocene Permafrost and Landscape Dynamics based on a Drained Lake Basin Core from the Northern Seward Peninsula, Northwest Alaska JF - Permafrost and Periglacial Processes N2 - Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a4m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5ka BP. The latter was terminated by the deposition of 1m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42ka BP. Yedoma deposition continued until 22.5ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - Beringia KW - palaeoenvironmental reconstruction KW - thermokarst lake dynamics KW - cryostratigraphy KW - tephra KW - bioindicators KW - yedoma Y1 - 2016 U6 - https://doi.org/10.1002/ppp.1848 SN - 1045-6740 SN - 1099-1530 VL - 27 SP - 56 EP - 75 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Heslop, J. K. A1 - Winkel, Matthias A1 - Anthony, K. M. Walter A1 - Spencer, R. G. M. A1 - Podgorski, D. C. A1 - Zito, P. A1 - Kholodov, A. A1 - Zhang, M. A1 - Liebner, Susanne T1 - Increasing organic carbon biolability with depth in yedoma permafrost BT - ramifications for future climate change JF - Journal of geophysical research : Biogeosciences N2 - Permafrost thaw subjects previously frozen organic carbon (OC) to microbial decomposition, generating the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) and fueling a positive climate feedback. Over one quarter of permafrost OC is stored in deep, ice-rich Pleistocene-aged yedoma permafrost deposits. We used a combination of anaerobic incubations, microbial sequencing, and ultrahigh-resolution mass spectrometry to show yedoma OC biolability increases with depth along a 12-m yedoma profile. In incubations at 3 degrees C and 13 degrees C, GHG production per unit OC at 12-versus 1.3-m depth was 4.6 and 20.5 times greater, respectively. Bacterial diversity decreased with depth and we detected methanogens at all our sampled depths, suggesting that in situ microbial communities are equipped to metabolize thawed OC into CH4. We concurrently observed an increase in the relative abundance of reduced, saturated OC compounds, which corresponded to high proportions of C mineralization and positively correlated with anaerobic GHG production potentials and higher proportions of OC being mineralized as CH4. Taking into account the higher global warming potential (GWP) of CH4 compared to CO2, thawed yedoma sediments in our study had 2 times higher GWP at 12-versus 9.0-m depth at 3 degrees C and 15 times higher GWP at 13 degrees C. Considering that yedoma is vulnerable to processes that thaw deep OC, our findings imply that it is important to account for this increasing GHG production and GWP with depth to better understand the disproportionate impact of yedoma on the magnitude of the permafrost carbon feedback. KW - permafrost KW - carbon KW - yedoma KW - Alaska KW - FT-ICR MS KW - microbes Y1 - 2019 U6 - https://doi.org/10.1029/2018JG004712 SN - 2169-8953 SN - 2169-8961 VL - 124 IS - 7 SP - 2021 EP - 2038 PB - American Geophysical Union CY - Washington ER -