TY - JOUR A1 - Whittingham, Joseph A1 - Sparre, Martin A1 - Pfrommer, Christoph A1 - Pakmor, Rüdiger T1 - The impact of magnetic fields on cosmological galaxy mergers BT - I. Reshaping gas and stellar discs JF - Monthly notices of the Royal Astronomical Society N2 - Mergers play an important role in galaxy evolution. In particular, major mergers are able to have a transformative effect on galaxy morphology. In this paper, we investigate the role of magnetic fields in gas-rich major mergers. To this end, we run a series of high-resolution magnetohydrodynamic (MHD) zoom-in simulations with the moving-mesh code arepo and compare the outcome with hydrodynamic simulations run from the same initial conditions. This is the first time that the effect of magnetic fields in major mergers has been investigated in a cosmologically consistent manner. In contrast to previous non-cosmological simulations, we find that the inclusion of magnetic fields has a substantial impact on the production of the merger remnant. Whilst magnetic fields do not strongly affect global properties, such as the star formation history, they are able to significantly influence structural properties. Indeed, MHD simulations consistently form remnants with extended discs and well-developed spiral structure, whilst hydrodynamic simulations form more compact remnants that display distinctive ring morphology. We support this work with a resolution study and show that whilst global properties are broadly converged across resolution and physics models, morphological differences only develop given sufficient resolution. We argue that this is due to the more efficient excitement of a small-scale dynamo in higher resolution simulations, resulting in a more strongly amplified field that is better able to influence gas dynamics. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: magnetic KW - fields Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab1425 SN - 0035-8711 SN - 1365-2966 VL - 506 IS - 1 SP - 229 EP - 255 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Weilbacher, Peter Michael A1 - Monreal-Ibero, Ana A1 - Verhamme, Anne A1 - Sandin, Christer A1 - Steinmetz, Matthias A1 - Kollatschny, Wolfram A1 - Krajnovic, Davor A1 - Kamann, Sebastian A1 - Roth, Martin M. A1 - Erroz-Ferrer, Santiago A1 - Marino, Raffaella Anna A1 - Maseda, Michael V. A1 - Wendt, Martin A1 - Bacon, Roland A1 - Dreizler, Stefan A1 - Richard, Johan A1 - Wisotzki, Lutz T1 - Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy JF - Astronomy and astrophysics : an international weekly journal N2 - The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect H II regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of H II regions, showing fainter luminosities. By comparing H II region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each H II region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking H II regions for the diffuse ionized gas in the Antennae. KW - galaxies: interactions KW - galaxies: individual: NGC 4038, NGC 4039 KW - galaxies: ISM KW - ISM: structure KW - H II regions Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731669 SN - 1432-0746 VL - 611 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Subramanian, Smitha A1 - Rubele, Stefano A1 - Sun, Ning-Chen A1 - Girardi, Leo A1 - de Grijs, Richard A1 - van Loon, Jacco Th. A1 - Cioni, Maria-Rosa L. A1 - Piatti, Andres E. A1 - Bekki, Kenji A1 - Emerson, Jim A1 - Ivanov, Valentin D. A1 - Kerber, Leandro A1 - Marconi, Marcella A1 - Ripepi, Vincenzo A1 - Tatton, Benjamin L. T1 - The VMC Survey - XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud JF - Monthly notices of the Royal Astronomical Society KW - stars: individual: red clump stars KW - galaxies: interactions KW - Magellanic Clouds Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx205 SN - 0035-8711 SN - 1365-2966 VL - 467 SP - 2980 EP - 2995 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sparre, Martin A1 - Whittingham, Joseph A1 - Damle, Mitali A1 - Hani, Maan H. A1 - Richter, Philipp A1 - Ellison, Sara L. A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - Gas flows in galaxy mergers BT - supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution JF - Monthly notices of the Royal Astronomical Society N2 - In major galaxy mergers, the orbits of stars are violently perturbed, and gas is torqued to the centre, diluting the gas metallicity and igniting a starburst. In this paper, we study the gas dynamics in and around merging galaxies using a series of cosmological magnetohydrodynamical zoom-in simulations. We find that the gas bridge connecting the merging galaxies pre-coalescence is dominated by turbulent pressure, with turbulent Mach numbers peaking at values of 1.6-3.3. This implies that bridges are dominated by supersonic turbulence, and are thus ideal candidates for studying the impact of extreme environments on star formation. We also find that gas accreted from the circumgalactic medium (CGM) during the merger significantly contributes (27-51 percent) to the star formation rate (SFR) at the time of coalescence and drives the subsequent reignition of star formation in the merger remnant. Indeed, 19-53 percent of the SFR at z = 0 originates from gas belonging to the CGM prior the merger. Finally, we investigate the origin of the metallicity-diluted gas at the centre of merging galaxies. We show that this gas is rapidly accreted on to the Galactic Centre with a time-scale much shorter than that of normal star-forming galaxies. This explains why coalescing galaxies are not well-captured by the fundamental metallicity relation. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: starburst Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3171 SN - 1365-2966 VL - 509 IS - 2 SP - 2720 EP - 2735 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Richter, Philipp A1 - Winkel, Benjamin A1 - Wakker, Bart P. A1 - Pingel, N. M. A1 - Fox, Andrew J. A1 - Heald, G. A1 - Walterbos, Rene A. M. A1 - Fechner, C. A1 - Ben Bekhti, N. A1 - Gentile, G. A1 - Zschaechner, Laura T1 - Circumgalactic Gas at Its Extreme BT - Tidal Gas Streams around the Whale Galaxy NGC 4631 Explored with HST/COS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a detailed analysis of the absorption properties of one of the tidal gas streams around the "Whale" galaxy NGC 4631 in the direction of the quasar 2MASS J12421031+3214268. Our study is based on ultraviolet spectral data obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST) and 21cm-data from the HALOGAS project and the Green Bank Telescope (GBT). We detect strong H I Ly alpha absorption in the velocity range +550 to +800 km s(-1) related to gas from a NGC 4631 tidal stream known as Spur 2. We measure a column density of log (N(H I/cm(-2))) = 18.68 +/- 0.15, indicating that the quasar sightline traces the outer boundary of Spur 2 as seen in the 21 cm data. Metal absorption in Spur 2 is detected in the lines of O I, C II, Si II, and Si III in a complex absorption pattern that reflects the multiphase nature of the gas. We find that the average neutral gas fraction in Spur 2 toward 2MASS J12421031+3214268 is only 14%. This implies that ionized gas dominates the total mass of Spur 2, which then may comprise more than 10(9)M(circle dot). No significant depletion of Si is observed, showing that Spur 2 does not contain significant amounts of dust. From the measured O I/H I column density ratio, we determine an alpha abundance in Spur 2 of 0.131(-0.05)(+0.07) solar ([alpha/H] = -0.90 +/- 0.16), which is substantially lower than what is observed in the NGC 4631 disk. The low metallicity and low dust content suggest that Spur 2 represents metal-deficient gas stripped off a gas-rich satellite galaxy during a recent encounter with NGC 4631. KW - galaxies: evolution KW - galaxies: halos KW - galaxies: interactions KW - ISM: abundances KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aae838 SN - 0004-637X SN - 1538-4357 VL - 868 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Monreal-Ibero, Ana A1 - Weilbacher, Peter Michael A1 - Wendt, Martin T1 - Diffuse interstellar bands lambda 5780 and lambda 5797 in the Antennae Galaxy as seen by MUSE JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group is very limited and will surely blossom in the era of the Extremely Large Telescopes. However, we can already start paving the way. One possibility that needs to be explored is the use of high-sensitivity integral field spectrographs. Aims. Our goals are twofold. First, we aim to derive reliable mapping of at least one DIB in a galaxy outside the Local Group. Second, we want to explore the relation between DIBs and other properties of the interstellar medium (ISM) in the galaxy. Methods. We use Multi Unit Spectroscopic Explorer (MUSE) data for the Antennae Galaxy, the closest major galaxy merger. High signal-to-noise spectra were created by co-adding the signal of many spatial elements with the Voronoi binning technique. The emission of the underlying stellar population was modelled and substracted with the STARLIGHT spectral synthesis code. Flux and equivalent width of the features of interest were measured by means of fitting to Gaussian functions. Conclusions. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research. KW - dust, extinction KW - ISM: lines and bands KW - galaxies: ISM KW - galaxies: individual: Antennae Galaxy KW - galaxies: interactions KW - ISM: structure Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201732178 SN - 1432-0746 VL - 615 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Johnson, Sean D. A1 - Chen, Hsiao-Wen A1 - Straka, Lorrie A1 - Schaye, Joop A1 - Cantalupo, Sebastiano A1 - Wendt, Martin A1 - Muzahid, Sowgat A1 - Bouché, Nicolas A1 - Herenz, Edmund Christian A1 - Kollatschny, Wolfram A1 - Mulchaey, John S. A1 - Marino, Raffaella A. A1 - Maseda, Michael A1 - Wisotzki, Lutz T1 - Galaxy and quasar fueling caught in the act from the intragroup to the interstellar medium JF - The astrophysical journal : Part 2, Letters N2 - We report the discovery of six spatially extended (10-100 kpc) line-emitting nebulae in the z approximate to 0.57 galaxy group hosting PKS 0405-123, one of the most luminous quasars at z < 1. The discovery is enabled by the Multi Unit Spectroscopic Explorer and provides tantalizing evidence connecting large-scale gas streams with nuclear activity on scales of <10 proper kpc (pkpc). One of the nebulae exhibits a narrow, filamentary morphology extending over 50 pkpc toward the quasar with narrow internal velocity dispersion (50 km s(-1)) and is not associated with any detected galaxies, consistent with a cool intragroup medium filament. Two of the nebulae are 10 pkpc north and south of the quasar with tidal-arm-like morphologies. These two nebulae, along with a continuum-emitting arm extending 60 pkpc from the quasar, are signatures of interactions that are expected to redistribute angular momentum in the host interstellar medium (ISM) to facilitate star formation and quasar fueling in the nucleus. The three remaining nebulae are among the largest and most luminous [O III] emitting "blobs" known (1400-2400 pkpc(2)) and correspond both kinematically and morphologically to interacting galaxy pairs in the quasar host group, consistent with arising from stripped ISM rather than large-scale quasar outflows. The presence of these large- and small-scale nebulae in the vicinity of a luminous quasar bears significantly on the effect of large-scale environment on galaxy and black hole fueling, providing a natural explanation for the previously known correlation between quasar luminosity and cool circumgalactic medium. KW - galaxies: interactions KW - intergalactic medium KW - quasars: general KW - quasars: individual (PKS 0405-123) Y1 - 2018 U6 - https://doi.org/10.3847/2041-8213/aaf1cf SN - 2041-8205 SN - 2041-8213 VL - 869 IS - 1 PB - IOP Publishing Ltd. (Bristol) CY - Bristol ER - TY - JOUR A1 - Hani, Maan H. A1 - Sparre, Martin A1 - Ellison, Sara L. A1 - Torrey, Paul A1 - Vogelsberger, Mark T1 - Galaxy mergers moulding the circum-galactic medium BT - I. The impact of a major merger JF - Monthly notices of the Royal Astronomical Society N2 - Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extragalactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z = 0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM. KW - methods: numerical KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: interactions Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3252 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 1 SP - 1160 EP - 1176 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bustamante, Sebastian A1 - Sparre, Martin A1 - Springel, Volker A1 - Grand, Robert J. J. T1 - Merger-induced metallicity dilution in cosmological galaxy formation simulations JF - Monthly notices of the Royal Astronomical Society N2 - Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than 40 kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the fundamental metallicity relation, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations. KW - methods: numerical KW - galaxies: interactions KW - galaxies: star formation KW - galaxies: evolution Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1692 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3381 EP - 3392 PB - Oxford Univ. Press CY - Oxford ER -