TY - JOUR A1 - Lukas, Marcus A1 - Sperfeld, Erik A1 - Wacker, Alexander T1 - Growth Rate Hypothesis does not apply across colimiting conditions cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. Herbivores show stronger control of element homoeostasis than primary producers, which can lead to constraints in carbon and nutrient transfer efficiencies from plants to animals. Insufficient dietary phosphorus (P) availability can cause reduced body P contents along with lower growth rates of animals, leading to a positive relationship between growth and body P. 2. We examined how a second limiting food component in combination with dietary P limitation influences growth and P homoeostasis of a herbivore and how this colimitation influences the hypothesized positive correlation between body P content and growth rates. Therefore, we investigated the responses in somatic growth and P stoichiometry of Daphnia magna raised on a range of diets with different amounts of P and the sterol cholesterol. 3. Somatic growth rates of D. magna increased asymptotically with increasing P as well as with increasing cholesterol availability. The body P content increased with increasing dietary P and stabilized at high dietary P availability. The observed plasticity in D. magna's P stoichiometry became stronger with increasing cholesterol availability, i.e. with decreasing colimitation by cholesterol. 4. At P-limiting conditions, the positive correlation between body P content and growth rate, as predicted by the growth rate hypothesis (GRH) applied to the within-species level, declined with increasing cholesterol limitation and disappeared entirely when cholesterol was not supplied. Thus, even when Daphnia shows no growth response owing to strong limitation by the colimiting nutrient, the body P content may vary substantially, calling into question the unconditional use of herbivores' P content as predictor of a potential P limitation in nature. 5. The observed interaction between dietary P and cholesterol on Daphnia's growth and stoichiometry can be used as a conceptual framework of how colimiting essential nutrients affect herbivore homoeostasis, and provide further insights into the applicability of the GRH within a consumer species. KW - colimitation KW - Daphnia KW - ecological stoichiometry KW - essential resources KW - food quality KW - imbalanced diet KW - nutrient limitation KW - nutritional ecology KW - zooplankton Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2435.2011.01876.x SN - 0269-8463 VL - 25 IS - 6 SP - 1206 EP - 1214 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Lukas, Marcus A1 - Frost, Paul C. A1 - Wacker, Alexander T1 - The neonate nutrition hypothesis - early feeding affects the body stoichiometry of Daphnia offspring JF - Freshwater biology N2 - Aquatic herbivores consume variable quantities and qualities of food. In freshwater systems, where phosphorus (P) is often a primary limiting element, inadequate dietary P can slow maternal growth and reduce body P content. There remains uncertainty about whether and how dietary effects on mothers are transferred to offspring by way of egg provisioning. Using the keystone herbivore Daphnia, we tested a novel explanation (the neonate nutrition hypothesis') to determine whether the early nutrition of newborns affects their elemental composition and whether the indications of differences in maternal P nutrition found previously might be overestimated. We thus examined the P content of mothers and their eggs from deposition through development to the birth of neonates. We examined further whether very short periods of ingestion (3h) by the offspring alter the overall P content of juvenile Daphnia. We showed that strong dietary P effects on mothers were not directly transferred to their eggs. Irrespective of the supply of P in the maternal diet, the P content of eggs in different developmental stages and in (unfed) neonates did not differ. This indicates that Daphnia mothers do not reduce the quality (in terms of P) of newly produced offspring after intermittent periods (i.e. several days) of poor nutrition. In contrast, the P content of neonates reflected that of their food after brief periods of feeding, indicating that even temporary exposure to nutrient poor food immediately after birth may strongly affect the elemental composition of neonates. Our results thus support the neonate nutrition hypothesis, which, like differential maternal provisioning, is a possible explanation for the variable elemental quality of young Daphnia. KW - ecological stoichiometry KW - food quality KW - maternal effects KW - nutrient limitation KW - zooplankton Y1 - 2013 U6 - https://doi.org/10.1111/fwb.12213 SN - 0046-5070 VL - 58 IS - 11 SP - 2333 EP - 2344 PB - Wiley-Blackwell CY - Hoboken ER -