TY - JOUR A1 - Nagornov, Roman A1 - Osipoy, Grigory A1 - Komarov, Maxim A1 - Pikovskij, Arkadij A1 - Shilnikov, Andrey T1 - Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound JF - Communications in nonlinear science & numerical simulation N2 - We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchronization KW - Hodgkin-Huxley model KW - Half-center oscillator KW - Post-inhibitory rebound Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2015.11.024 SN - 1007-5704 SN - 1878-7274 VL - 36 SP - 175 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Komarov, Maxim A1 - Pikovskij, Arkadij T1 - The Kuramoto model of coupled oscillators with a bi-harmonic coupling function JF - Physica : D, Nonlinear phenomena N2 - We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the ensemble size as a power law. (C) 2014 Elsevier B.V. All rights reserved. KW - Kuramoto model KW - Bi-harmonic coupling function KW - Multi-branch entrainment KW - Synchronization Y1 - 2014 U6 - https://doi.org/10.1016/j.physd.2014.09.002 SN - 0167-2789 SN - 1872-8022 VL - 289 SP - 18 EP - 31 PB - Elsevier CY - Amsterdam ER -