TY - THES A1 - Patyniak, Magda T1 - Seismotectonic segmentation, paleoearthquakes and style of deformation along the Northern Pamir thrust system, South Kyrgyzstan T1 - Seismotektonische Segmentierung, Paläoerdbeben und Art der Deformation entlang des nördlichen Pamir-Überschiebungssystems, Südkirgisistan N2 - The Pamir Frontal Thrust (PFT) located in the Trans Alai range in Central Asia is the principal active fault of the intracontinental India-Eurasia convergence zone and constitutes the northernmost boundary of the Pamir orogen at the NW edge of this collision zone. Frequent seismic activity and ongoing crustal shortening reflect the northward propagation of the Pamir into the intermontane Alai Valley. Quaternary deposits are being deformed and uplifted by the advancing thrust front of the Trans Alai range. The Alai Valley separates the Pamir range front from the Tien Shan mountains in the north; the Alai Valley is the vestige of a formerly contiguous basin that linked the Tadjik Depression in the west with the Tarim Basin in the east. GNSS measurements across the Central Pamir document a shortening rate of ~25 mm/yr, with a dramatic decrease of ~10-15 mm over a short distance across the northernmost Trans Alai range. This suggests that almost half of the shortening in the greater Pamir – Tien Shan collision zone is absorbed along the PFT. The short-term (geodetic) and long-term (geologic) shortening rates across the northern Pamir appear to be at odds with an apparent slip-rate discrepancy along the frontal fault system of the Pamir. Moreover, the present-day seismicity and historical records have not revealed great Mw > 7 earthquakes that might be expected with such a significant slip accommodation. In contrast, recent and historic earthquakes exhibit complex rupture patterns within and across seismotectonic segments bounding the Pamir mountain front, challenging our understanding of fault interaction and the seismogenic potential of this area, and leaving the relationships between seismicity and the geometry of the thrust front not well understood. In this dissertation I employ different approaches to assess the seismogenic behavior along the PFT. Firstly, I provide paleoseismic data from five trenches across the central PFT segment (cPFT) and compute a segment-wide earthquake chronology over the past 16 kyr. This novel dataset provides important insights into the recurrence, magnitude, and rupture extent of past earthquakes along the cPFT. I interpret five, possibly six paleoearthquakes that have ruptured the Pamir mountain front since ∼7 ka and 16 ka, respectively. My results indicate that at least three major earthquakes ruptured the full-segment length and possibly crossed segment boundaries with a recurrence interval of ∼1.9 kyr and potential magnitudes of up to Mw 7.4. Importantly, I did not find evidence for great (i.e., Mw ≥8) earthquakes. Secondly, I combine my paleoseimic results with morphometric analyses to establish a segment-wide distribution of the cumulative vertical separation along offset fluvial terraces and I model a long-term slip rate for the cPFT. My investigations reveal discrepancies between the extents of slip and rupture during apparent partial segment ruptures in the western half of the cPFT. Combined with significantly higher fault scarp offsets in this sector of the cPFT, the observations indicate a more mature fault section with a potential for future fault linkage. I estimate an average rate of horizontal motion for the cPFT of 4.1 ± 1.5 mm/yr during the past ∼5 kyr, which does not fully match the GNSS-derived present-day shortening rate of ∼10 mm/yr. This suggests a complex distribution of strain accumulation and potential slip partitioning between the cPFT and additional faults and folds within the Pamir that may be associated with a partially locked regional décollement. The third part of the thesis provides new insights regarding the surface rupture of the 2008 Mw 6.6 Nura earthquake that ruptured along the eastern PFT sector. I explore this rupture in the context of its structural complexity by combining extensive field observations with high-resolution digital surface models. I provide a map of the rupture extent, net slip measurements, and updated regional geological observations. Based on this data I propose a tectonic model in this area associated with secondary flexural-slip faulting along steeply dipping bedding of folded Paleogene sedimentary strata that is related to deformation along a deeper blind thrust. Here, the strain release seems to be transferred from the PFT towards older inherited basement structures within the area of advanced Pamir-Tien Shan collision zone. The extensive research of my dissertation results in a paleoseismic database of the past 16 ~kyr, which contributes to the understanding of the seismogenic behavior of the PFT, but also to that of segmented thrust-fault systems in active collisional settings. My observations underscore the importance of combining different methodological approaches in the geosciences, especially in structurally complex tectonic settings like the northern Pamir. Discrepancy between GNSS-derived present-day deformation rates and those from different geological archives in the central part, as well as the widespread distribution of the deformation due to earthquake triggered strain transfer in the eastern part reveals the complexity of this collision zone and calls for future studies involving multi-temporal and interdisciplinary approaches. N2 - Die Pamir-Frontüberschiebung (PFT) des Trans-Alai-Gebirges in Zentralasien ist die wichtigste aktive Verwerfung der intrakontinentalen indisch-eurasischen Konvergenzzone und bildet die nördlichste Grenze des Pamir-Orogens am NW-Rand dieser Kollisionszone. Die intensive Seismizität und die fortschreitende Krustenverkürzung spiegeln die nach Norden gerichtete Verlagerung des Pamir in das intermontane Alai-Tal wider. Quartäre Ablagerungen werden durch die vorstoßende Überschiebungsfront des Trans-Alai-Gebirges sukzessive deformiert und angehoben. Das Alai-Tal trennt das Pamir-Gebirge vom Südrand des Tien Shan-Gebirges und verkörpert die Überreste eines ehemals zusammenhängenden Beckens, welches früher die Tadjik-Senke im Westen mit dem Tarim-Becken im Osten verband. GNSS-Messungen südlich der PFT im Bereich des Zentralpamirs dokumentieren eine Verkürzungsrate von 25 mm/Jahr, welche über eine kurze Strecke zur nördlichen Front des Trans-Alai-Gebirges hin drastisch um 10-15 mm abnimmt. Dies lässt darauf schließen, dass fast die Hälfte der Einengung entlang der PFT absorbiert wird, welche sich in der Kollisionszone zwischen dem Pamir und dem Tien Shan befindet. Eine offensichtliche Abweichung zwischen den kurzfristigen (geodätischen) und langfristigen (geologischen) Verkürzungsraten im nördlichen Pamir weist auf eine Diskrepanz in den Versatzraten entlang des nördlichen frontalen Verwerfungssystems hin. Darüber hinaus weisen weder die heutige Seismizität noch die historischen Aufzeichnungen auf große Erdbeben der Stärke Mw > 7 hin, wie sie bei einer solch signifikanten Verschiebung zu erwarten wären. Stattdessen zeigen rezente und historische Erdbeben komplexe Bruchmuster innerhalb und quer zu seismotektonisch definierten Segmenten, die die Pamir-Gebirgsfront begrenzen, was unser Verständnis der Verwerfungsinteraktion und des seismogenen Potenzials dieses Gebiets herausfordert. Die Wechselwirkungen zwischen Seismizität und der Geometrie der Überschiebungsfront sind somit nicht gut verstanden. In dieser Dissertation verwende ich verschiedene Verfahren, um das seismogene Verhalten entlang der PFT zu bestimmen. Dazu werden zunächst paläoseismische Daten aus fünf Schürfgräben entlang des zentralen Segmentes der PFT (cPFT) erhoben und eine segmentweite Erdbebenchronologie zusammengestellt. Dieser neue Datensatz liefert wichtige Erkenntnisse über die Häufigkeit, die Stärke und das Bruchausmaß vergangener Erdbeben entlang der cPFT. Darauf basierend wurden fünf bzw. sechs Paläoerdbeben interpretiert, die sich entlang der nördlichen Pamir-Gebirgsfront in den letzten ∼7 ka bzw. ~16 ka ereigneten. Meine Ergebnisse deuten darauf hin, dass davon mindestens drei große Erdbeben die gesamte Länge des zentralen Segments durchbrochen haben und der Bruch möglicherweise sogar die Segmentgrenzen überschritten hat, mit einem Wiederholungsintervall von ∼1,9 kyr und potenziellen Magnituden von bis zu Mw 7,4. Entscheidend an dieser Stelle ist, dass ich keine Hinweise auf sehr große (d.h. Mw ≥ 8) Erdbeben gefunden habe. Meine paläoseismischen Ergebnisse werden anschließend mit morphometrischen Analysen entlang des zentralen PFT-Segmentes verknüpft, um eine segmentweite Verteilung der kumulativ versetzten Geländestufe entlang fluvialer Terrassen zu ermitteln. Aus dieser Verteilung wird eine langzeitliche Versatzrate für die cPFT modelliert. In der westlichen Hälfte der cPFT zeigen meine Untersuchungen deutliche Unstimmigkeiten zwischen dem Versatz und der Ausdehnung des Oberflächenbruchs auf. In Anbetracht der deutlich höheren Geländestufen im westlichen Bereich deuten die Beobachtungen auf einen reiferen Verwerfungsabschnitt hin. Somit besteht Potenzial für zukünftige Verbindung der Segmente und potenziell stärke Erdbeben. Mit meinen Daten konnte ich eine mittlere horizontale Bewegungsrate von 4,1 ± 1,5 mm/Jahr während der letzten ∼5 kyr für die cPFT ermitteln, welche nicht vollständig mit der von GNSS abgeleiteten heutigen Verkürzungsrate von ∼10 mm/Jahr übereinstimmt. Dies deutet auf eine komplexe Verteilung des Spannungsaufbaus und eine potenzielle Aufteilung dieser Spannungen zwischen der cPFT und den übrigen Verwerfungen und Falten innerhalb des Pamirs hin, welche möglicherweise mit einem teilweise blockierten regionalen Décollement einhergehen. Der letzte Teil der Arbeit liefert neue Erkenntnisse über den Oberflächenbruch des Nura-Erdbebens der Stärke 6,6 (Mw) aus dem Jahr 2008, das sich entlang der östlichen PFT ereignete. Ich untersuche diesen Bruch im Hinblick auf seine strukturelle Komplexität, indem ich umfangreiche Feldbeobachtungen mit hochauflösenden digitalen Oberflächenmodellen verknüpfe. Ich erstelle eine Karte der Bruchausdehnung, des gemessenen Gesamtversatzes und aktualisiere regionale geologische Beobachtungen. Auf der Grundlage dieser Daten entwickle ich für dieses Gebiet Szenarien für ein tektonisches Modell, das mit Biegegleitfalten in mesozoischen und känozoischen Sedimentschichten im Zusammenhang steht. Ich zeige, dass diese Formen mit älteren, kumulativ versetzten seismogenen Strukturen übereinzustimmen scheinen und auf eine wiederkehrende, langfristige Deformationsgeschichte entlang dieses Sektors der nördlichen Pamir-Gebirgsfront hinweisen. Die umfangreichen Forschungsarbeiten meiner Dissertation resultieren in einer paleoseismischen Datenbasis der letzten ~16,000 Jahre, welche zum Verständnis des seismogenen Verhaltens der PFT, aber auch zu dem von segmentierten Überschiebungssystemen in aktiven Kollisionsgebieten beitragen. Meine Beobachtungen unterstreichen, wie wichtig die Kombination verschiedener methodischer Ansätze in den Geowissenschaften ist, insbesondere in strukturell komplexen tektonischen Gebieten wie dem nördlichen Pamir. Die Diskrepanz zwischen den von GNSS abgeleiteten heutigen Deformationsraten und denen aus verschiedenen geologischen Archiven im zentralen Teil, und die weite Verbreitung der Deformation durch erdbebenbedingten Dehnungstransfer im östlichen Teil offenbart die Komplexität dieser Kollisionszone und erfordert künftige Studien mit multitemporalen und interdisziplinären Ansätzen. KW - paleoseismology KW - Paleoseismologie KW - Neotektonik KW - Strukturgeologie KW - quartäre Geochronologie KW - Zentral Asien Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577141 ER - TY - THES A1 - Jentsch, Anna T1 - Soil gas analytics in geothermal exploration and monitoring T1 - Bodengasanalytik für die Exploration und Überwachung von geothermischen Ressourcen N2 - Major challenges during geothermal exploration and exploitation include the structural-geological characterization of the geothermal system and the application of sustainable monitoring concepts to explain changes in a geothermal reservoir during production and/or reinjection of fluids. In the absence of sufficiently permeable reservoir rocks, faults and fracture networks are preferred drilling targets because they can facilitate the migration of hot and/or cold fluids. In volcanic-geothermal systems considerable amounts of gas emissions can be released at the earth surface, often related to these fluid-releasing structures. In this thesis, I developed and evaluated different methodological approaches and measurement concepts to determine the spatial and temporal variation of several soil gas parameters to understand the structural control on fluid flow. In order to validate their potential as innovative geothermal exploration and monitoring tools, these methodological approaches were applied to three different volcanic-geothermal systems. At each site an individual survey design was developed regarding the site-specific questions. The first study presents results of the combined measurement of CO2 flux, ground temperatures, and the analysis of isotope ratios (δ13CCO2, 3He/4He) across the main production area of the Los Humeros geothermal field, to identify locations with a connection to its supercritical (T > 374◦C and P > 221 bar) geothermal reservoir. The results of the systematic and large-scale (25 x 200 m) CO2 flux scouting survey proved to be a fast and flexible way to identify areas of anomalous degassing. Subsequent sampling with high resolution surveys revealed the actual extent and heterogenous pattern of anomalous degassing areas. They have been related to the internal fault hydraulic architecture and allowed to assess favourable structural settings for fluid flow such as fault intersections. Finally, areas of unknown structurally controlled permeability with a connection to the superhot geothermal reservoir have been determined, which represent promising targets for future geothermal exploration and development. In the second study, I introduce a novel monitoring approach by examining the variation of CO2 flux to monitor changes in the reservoir induced by fluid reinjection. For that reason, an automated, multi-chamber CO2 flux system was deployed across the damage zone of a major normal fault crossing the Los Humeros geothermal field. Based on the results of the CO2 flux scouting survey, a suitable site was selected that had a connection to the geothermal reservoir, as identified by hydrothermal CO2 degassing and hot ground temperatures (> 50 °C). The results revealed a response of gas emissions to changes in reinjection rates within 24 h, proving an active hydraulic communication between the geothermal reservoir and the earth surface. This is a promising monitoring strategy that provides nearly real-time and in-situ data about changes in the reservoir and allows to timely react to unwanted changes (e.g., pressure decline, seismicity). The third study presents results from the Aluto geothermal field in Ethiopia where an area-wide and multi-parameter analysis, consisting of measurements of CO2 flux, 222Rn, and 220Rn activity concentrations and ground temperatures was conducted to detect hidden permeable structures. 222Rn and 220Rn activity concentrations are evaluated as a complementary soil gas parameter to CO2 flux, to investigate their potential to understand tectono-volcanic degassing. The combined measurement of all parameters enabled to develop soil gas fingerprints, a novel visualization approach. Depending on the magnitude of gas emissions and their migration velocities the study area was divided in volcanic (heat), tectonic (structures), and volcano-tectonic dominated areas. Based on these concepts, volcano-tectonic dominated areas, where hot hydrothermal fluids migrate along permeable faults, present the most promising targets for future geothermal exploration and development in this geothermal field. Two of these areas have been identified in the south and south-east which have not yet been targeted for geothermal exploitation. Furthermore, two unknown areas of structural related permeability could be identified by 222Rn and 220Rn activity concentrations. Eventually, the fourth study presents a novel measurement approach to detect structural controlled CO2 degassing, in Ngapouri geothermal area, New Zealand. For the first time, the tunable diode laser (TDL) method was applied in a low-degassing geothermal area, to evaluate its potential as a geothermal exploration method. Although the sampling approach is based on profile measurements, which leads to low spatial resolution, the results showed a link between known/inferred faults and increased CO2 concentrations. Thus, the TDL method proved to be a successful in the determination of structural related permeability, also in areas where no obvious geothermal activity is present. Once an area of anomalous CO2 concentrations has been identified, it can be easily complemented by CO2 flux grid measurements to determine the extent and orientation of the degassing segment. With the results of this work, I was able to demonstrate the applicability of systematic and area-wide soil gas measurements for geothermal exploration and monitoring purposes. In particular, the combination of different soil gases using different measurement networks enables the identification and characterization of fluid-bearing structures and has not yet been used and/or tested as standard practice. The different studies present efficient and cost-effective workflows and demonstrate a hands-on approach to a successful and sustainable exploration and monitoring of geothermal resources. This minimizes the resource risk during geothermal project development. Finally, to advance the understanding of the complex structure and dynamics of geothermal systems, a combination of comprehensive and cutting-edge geological, geochemical, and geophysical exploration methods is essential. N2 - Zu den großen Herausforderungen bei der Erkundung und Nutzung geothermischer Ressourcen, gehören die strukturgeologische Charakterisierung eines geothermischen Systems sowie die Anwendung nachhaltiger Überwachungskonzepte, um Veränderungen im geothermischen Reservoir während der Förderung und/oder Injektion von Fluiden zu verstehen. Bei unzureichender Permeabilität des Reservoirgesteins stellen Verwerfungen und Kluftnetzwerke bevorzugte Bohrziele dar, da sie potentielle Wegsamkeiten für heiße und/oder kalte Fluide sind. Entlang dieser fluidführenden Strukturen können in vulkanisch-geothermischen Systemen auch erhebliche Mengen an Gasemissionen an der Erdoberfläche freigesetzt werden. Im Rahmen dieser Arbeit wurden verschiedene methodische Ansätze und Messkonzepte entwickelt und getestet, um die räumliche und zeitliche Variation verschiedener Bodengasparameter zu bestimmen und diese im Kontext struktureller Permeabilitäten zu interpretieren. Um das Potential der Bodengasanalytik als innovative geothermische Explorations- und Überwachungsmethode zu validieren, wurden die methodischen Ansätze auf drei verschiedene vulkanisch-geothermische Systeme angewendet. Diesbezüglich wurde für jeden Standort ein individueller Messansatz hinsichtlich der bekannten strukturgeologischen Merkmale und standortspezifischen Fragestellung entwickelt. Die erste Studie präsentiert Ergebnisse aus der kombinierten Messung des CO2-Flusses, der Bodentemperatur und der Analyse von Isotopenverhältnissen (δ13CCO2, 3He/4He), welche systematisch und flächendeckend in der geothermischen Produktionszone des Geothermalfeldes Los Humeros, Mexiko, gemessen wurden. Ziel war es, Bereiche mit einer Verbindung zum überkritischen (T > 374◦C and P > 221 bar) und bisher noch ungenutzten geothermischen Reservoir zu identifizieren. Das mit großem Punktabstand und systematisch generierte Messnetz (25 x 200 m) für die Bestimmung des CO2-Flusses erwies sich als schnelle und flexible Anwendung zur Identifizierung von Gebieten mit anomaler CO2-Entgasung. Basierend auf diesen Ergebnissen wurde anschließend mit geringeren Messabständen die genaue Ausdehnung und das heterogene Muster der anomalen Entgasungsgebiete aufgelöst. Dadurch war es möglich, die Entgasungsmuster mit der internen strukturgeologischen Heterogenität einzelner Störungssegmente in Verbindung zu bringen, wodurch Bereiche, die den Gasfluss besonders begünstigen, wie z.B. Störungsschnittpunkte, ermittelt werden konnten. Schließlich wurden vorher unbekannte, geothermisch interessante Bereiche, die eine erhöhte strukturelle Permeabilität aufweisen und eine Verbindung zum überkritischen Reservoir darstellen, identifiziert. Diese Bereiche gelten als besonders vielversprechend für die zukünftige geothermische Exploration und Entwicklung des Geothermalfeldes. In der zweiten Studie wird ein neuartiger Überwachungsansatz vorgestellt, bei dem kontinuierlich der CO2-Fluss gemessen wurde, um Veränderungen im Reservoir zu überwachen, die durch die Reinjektion von kaltem Thermalwasser verursacht werden. Zu diesem Zweck wurde ein automatisiertes Mehrkammer-CO2-Flusssystem innerhalb der Bruchzone einer Hauptstörung aufgebaut. Die Grundlage eines geeigneten Standortes wurde durch die Ergebnisse der CO2-Explorationsuntersuchungen gegeben. Es war von großer Wichtigkeit, dass der Standort eine Verbindung zum geothermischen Reservoir aufweist, erkennbar an hydrothermaler CO2-Entgasung und heißen Bodentemperaturen (> 50 °C). Die Ergebnisse zeigten ein Sinken der Gasemissionen als Reaktion auf Änderungen der Reinjektionsraten innerhalb von 24 h, was auf eine aktive hydraulische Kommunikation zwischen dem geothermischen Reservoir und der Erdoberfläche hinweist. Dies ist ein vielversprechende Methode, da nahezu in Echtzeit und in situ Daten über Veränderungen im Reservoir angezeigt werden und eine rechtzeitige Reaktion auf unerwünschte Veränderungen (z.B. Druckabfall, Seismizität) möglich ist. Die dritte Studie präsentiert Ergebnisse aus dem Aluto-Geothermiefeld in Äthiopien, bei dem eine flächendeckende, Multiparameter-Analyse, bestehend aus CO2-Fluss, 222Rn- und 220Rn-Aktivitätskonzentrationen und Bodentemperaturen durchgeführt wurde, um verborgene fluidführende Strukturen zu erkennen. Die 222Rn- und 220Rn-Aktivitätskonzentrationen wurden als ergänzende Bodengasparameter zum CO2-Fluss verwendet, um ihr Potenzial als zusätzliche Explorationsparameter zu bewerten. Die kombinierte Messung aller Parameter ermöglichte die Entwicklung von Bodengas Fingerabdrücken – ein neuartiger Visualisierungsansatz. Dadurch lässt sich in Abhängigkeit von der Menge an Gasemissionen und deren Fließgeschwindigkeiten das Untersuchungsgebiet in vulkanisch (Wärme), tektonisch (Strukturen) und vulkanischtektonisch dominierte Gebiete unterteilen. Basierend auf diesem Konzept stellen vulkanischtektonisch dominierte Gebiete die vielversprechendsten Ziele für die zukünftige geothermische Exploration und Entwicklung an diesem Standort dar, da hier heiße hydrothermale Fluide entlang durchlässiger Strukturen migrieren. Zwei solche, bisher nicht berücksichtigte Gebiete wurden im Süden und Südosten identifiziert. Darüber hinaus konnten zwei bisher unbekannte Gebiete mit strukturell bedingter Durchlässigkeit anhand der Aktivitätskonzentrationen von 222Rn und 220Rn identifiziert werden. Schließlich wird in der vierten Studie ein neuartiger Messansatz zum Nachweis der strukturbedingten CO2-Entgasung im geothermischen Gebiet Ngapouri, Neuseeland, vorgestellt. Zum ersten Mal wurde die Tunable-Diode-Laser-Methode (TDL) in einem geothermischen Gebiet mit geringer Entgasung angewandt, um ihr Potenzial als geothermische Explorationsmethode zu bewerten. Obwohl der Messansatz auf Profilmessungen basiert, was zu einer geringen räumlichen Auflösung führt, zeigen die Ergebnisse einen Zusammenhang zwischen bekannten und unbekannten Störungen sowie erhöhten CO2-Konzentrationen. Somit erwies sich die TDL-Methode bei der Bestimmung der strukturbedingten Permeabilität auch in solchen Gebieten als erfolgreich, in denen keine offensichtliche geothermische Aktivität vorhanden ist. Mit systematischen und kleinskaligen CO2-Fluss-Messungen, kann anschließend die räumliche Auflösung der Abschnitte eines Profils mit erhöhten CO2-Konzentrationen, verfeinert werden. Mit den Ergebnissen dieser Arbeit konnte ich die Anwendbarkeit systematischer und flächendeckender Bodengasmessungen für geothermische Explorations- und Überwachungszwecke nachweisen. Die Kombination von verschiedenen Bodengasen und deren Messung anhand verschiedener Messnetze ermöglicht die genaue Identifizierung und Charakterisierung fluidführender Strukturen und wurde bisher noch nicht standardmäßig eingesetzt und/oder erprobt. Mit den Ergebnissen der jeweiligen Studien werden effiziente und kostengünstige Arbeitsabläufe dargelegt, die einen praxisorientierten Ansatz zeigen, der zu einer erfolgreichen und nachhaltigen Exploration und Überwachung geothermischer Ressourcen beitragen kann. Letztlich wird somit das Ressourcenrisiko bei der geothermischen Projektentwicklung minimiert. Um das Verständnis der komplexen Struktur und Dynamik geothermischer Systeme voranzutreiben, ist schließlich eine Kombination aus innovativen und flächendeckenden geologischen, geochemischen und geophysikalischen Methoden unerlässlich. KW - geothermal exploration KW - gas geochemistry KW - structural geology KW - geothermal monitoring KW - Gasgeochemie KW - geothermische Exploration KW - geothermische Überwachung KW - Strukturgeologie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-544039 ER - TY - THES A1 - Barrionuevo, Matías T1 - The role of the upper plate in the Andean tectonic evolution (33-36°S): insights from structural geology and numerical modeling T1 - El rol de la placa superior en la evolución tectónica andina (33-36°S): aportes desde la geología estructural y el modelado numérico T1 - Die Rolle der oberen Platte in der tektonischen Entwicklung der Anden (33-36°S): Erkenntnisse aus der Strukturgeologie und der numerischen Modellierung N2 - Los Andes Centrales del Sur (33-36°S) son un gran laboratorio para el estudio de los procesos de deformación orogénica, donde las condiciones de borde, como la geometría de la placa subductada, imponen un importante control sobre la deformación andina. Por otro lado, la Placa Sudamericana presenta una serie de heterogeneidades que también imparten un control sobre el modo de deformación. El objetivo de esta tesis es probar el control de este último factor sobre la construcción del sistema orogénico andino. A partir de la integración de la información superficial y de subsuelo en el área sur (34°-36°S), se estudió la evolución de la deformación andina sobre el segmento de subducción normal. Se desarrolló un modelo estructural que evalúa el estado de esfuerzos desde el Mioceno hasta la actualidad, el rol de estructuras previas y su influencia en la migración de fluidos. Con estos datos y publicaciones previas de la zona norte del área de estudio (33°-34ºS), se realizó un modelado numérico geodinámico para probar la hipótesis del papel de las heterogeneidades de la placa superior en la evolución andina. Se utilizaron dos códigos (LAPEX-2D y ASPECT) basados en elementos finitos/diferencias finitas, que simulan el comportamiento de materiales con reologías elastoviscoplásticas bajo deformación. Los resultados del modelado sugieren que la deformación contraccional de la placa superior está significativamente controlada por la resistencia de la litósfera, que está definida por la composición de la corteza superior e inferior y por la proporción del manto litosférico, que a su vez está definida por eventos tectónicos previos. Estos eventos previos también definieron la composición de la corteza y su geometría, que es otro factor que controla la localización de la deformación. Con una composición de corteza inferior más félsica, la deformación sigue un modo de cizalla pura mientras que las composiciones más máficas provocan un modo de deformación tipo cizalla simple. Por otro lado, observamos que el espesor inicial de la litósfera controla la localización de la deformación, donde zonas con litósfera más fina es propensa a concentrar la deformación. Un límite litósfera-astenósfera asimétrico, como resultado del flujo de la cuña mantélica tiende a generar despegues vergentes al E. N2 - The Southern Central Andes (33°-36°S) are an excellent natural laboratory to study orogenic deformation processes, where boundary conditions, such as the geometry of the subducted plate, impose an important control on the evolution of the orogen. On the other hand, the South American plate presents a series of heterogeneities that additionally impart control on the mode of deformation. This thesis aims to test the control of this last factor over the construction of the Cenozoic Andean orogenic system. From the integration of surface and subsurface information in the southern area (34-36°S), the evolution of Andean deformation over the steeply dipping subduction segment was studied. A structural model was developed evaluating the stress state from the Miocene to the present-day and its influence in the migration of magmatic fluids and hydrocarbons. Based on these data, together with the data generated by other researchers in the northern zone of the study area (33-34°S), geodynamic numerical modeling was performed to test the hypothesis of the decisive role of upper-plate heterogeneities in the Andean evolution. Geodynamic codes (LAPEX-2D and ASPECT) which simulate the behavior of materials with elasto-visco-plastic rheologies under deformation, were used. The model results suggest that upper-plate contractional deformation is significantly controlled by the strength of the lithosphere, which is defined by the composition of the upper and lower crust, and by the proportion of lithospheric mantle, which in turn is determined by previous tectonic events. In addition, the previous regional tectono-magmatic events also defined the composition of the crust and its geometry, which is another factor that controls the localization of deformation. Accordingly, with more felsic lower crustal composition, the deformation follows a pure-shear mode, while more mafic compositions induce a simple-shear deformation mode. On the other hand, it was observed that initial lithospheric thickness may fundamentally control the location of deformation, with zones characterized by thin lithosphere are prone to concentrate it. Finally, it was found that an asymmetric lithosphere-astenosphere boundary resulting from corner flow in the mantle wedge of the eastward-directed subduction zone tends to generate east-vergent detachments. N2 - Die südlichen Zentralanden (33°-36°S) sind eine ausgezeichnete, natürliche Forschungsumgebung zur Untersuchung gebirgsbildender Deformationsprozesse, in der Randbedingungen, wie die Geometrie der subduzierten Platte, einen starken Einfluss auf die Evolution des Gebirges besitzen. Anderseits sind die Deformationsmechanismen geprägt von der Heterogenität der Südamerikanischen Platte. In dieser Arbeit wird die Bedeutung dieses Mechanismus für die Herausbildung der Anden während des Känozoikums untersucht. Im südlichen Teil (34-36°S), in dem die subduzierte Platte in einem steileren Winkel in den Erdmantel absinkt, wird die Entwicklung der Andendeformation mithilfe von oberflächlich aufgezeichneten und in tiefere Erdschichten reichenden Daten untersucht. Das darauf aufbauende Strukturmodell ermöglicht die Abschätzung der tektonischen Spannungen vom Miozän bis in die Neuzeit und den Einfluss der Bewegungen von magmatischen Fluiden, sowie Kohlenwasserstoffen. Auf Grundlage dieser Daten und solcher, die von Wissenschaftlern im nördlichen Bereich des Untersuchungsgebietes (33-34°S) erfasst wurden, wurde eine geodynamische, numerische Modellierung durchgeführt, um die Hypothese des Einflusses der Heterogenität der oberen Platten auf die Gebirgsbildung der Anden zu überprüfen. Die genutzte geodynamische Softwares (LAPEX-2D und ASPECT) simulieren das Verhalten von elasto-viskoplastischen Materialien, wenn diese unter Spannung stehen. Die Modellierungsergebnisse zeigen, dass die Kontraktionsprozesse hauptsächlich durch die Stärke der Lithosphäre beeinflusst werden. Diese Kenngröße wird aus der Zusammensetzung von Ober- und Unterkruste und dem Anteil des lithosphärischen Mantels, der durch vorhergehende tektonische Vorgänge überprägt ist, bestimmt. Diese räumlich begrenzten tektono-magmatischen Events definieren ebenfalls die Zusammensetzung und die Geometrie der Erdkruste, welche einen großen Einfluss auf das räumliche Auftreten von Deformationsprozessen hat. Eine eher felsische Unterkruste führt vorrangig zu pure-shear, während eine eher mafisch zusammengesetzte Unterkruste primär zu einem Deformationsmechanismus führt, der simple-shear genannt wird. Weiterhing wurde beobachtet, dass die Dicke der Lithosphäre vor der Deformation einen fundamentalen Einfluss auf die räumliche Eingrenzung von Deformation hat, wobei Regionen mit einer dünnen Lithosphärenschicht verstärkt Deformation aufweisen. Eine asymmetrische Grenzschicht zwischen Lithosphäre und Asthenosphäre ist das Resultat von Fließprozessen im Erdmantel, im Keil zwischen der obenliegenden Platte und der sich ostwärts absinkenden Subduktionszone, und verstärkt die Herausbildung von nach Osten gerichteten Abscherungen in der Erdkruste. KW - structural geology KW - tectonics KW - subduction KW - geodynamic modeling KW - geodynamische Modellierung KW - Strukturgeologie KW - Subduktion KW - Tektonik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515909 ER -