TY - THES A1 - Petersen, Gesa Maria T1 - Source array and receiver array analysis of Vogtland/ West Bohemia earthquake clusters T1 - Untersuchung von Erdbebenclustern im Vogtland/ Westböhmen durch Quell- und Empfängerarrays N2 - Die Region Vogtland/ West Böhmen im Grenzgebiet zwischen Deutschland und Tschechien ist bekannt für ihre geologische Aktivität. Holozäner Vulkanismus, Gasaustritte an Mofetten und Quellen und wiederkehrende Erdbebenschwärme sind Ausdruck geodynamischer Prozesse im Untergrund. Während des Erdbebenschwarms 2008/2009 in Nový Kostel installierte die Universität Potsdam ein temporäres Array in Rohrbach, in einer Epizentraldistanz von etwa 10 km und mit einer Aperatur von etwa 0.75 km. 22 Erdbeben wurden für Quellarray- beam forming ausgewählt. Quellarrays sind örtliche Cluster von Erdbeben, die von einer Empfängerstation aufgezeichnet werden. Wegen der Reziprozität der Green’schen Funktionen können diese in ähnlicher Weise genutzt werden wie Empfängerarrays, bei denen mehrere Stationen ein einzelnes Beben aufzeichnen. Die Kreuzkorrelationskoeffizienten aller Beben des Quellarrays, aufgezeichnet an einer einzelnen Station, sind in der Regel höher als für einzelne Ereignisse, die an allen Stationen des Empfängerarrays aufgezeichnet wurden. Dies deutet hinsichtlich der aufgelösten Frequenzen auf einen heterogenen Untergrund unter den Array-Stationen und ein vergleichsweise homogenes Quellarray-Volumen hin. Beam forming wurde mit den horizontalen und vertikalen Spuren aller Quellarray-Beben, aufgezeichnet auf allen 11 Stationen des Empfängerarrays, durchgeführt. Die Ergebnisse wurden im Hinblick auf Konversionen und reflektierte Phasen analysiert. Während die theoretische Richtung der direkten P-Welle im Falle der Quellarray-Aufzeichnungen gut übereinstimmt, wird eine Empfängerarray-Missweisung von 15° bis 25° beobachtet. Eine PS Phase, die der direkten P Phase folgt und eine mögliche SP Phase, die kurz vor der direkten S-Phase ankommt, wurden auf den summierten Spuren mehrerer Stationen interpretiert. Aus der Betrachtung der Laufzeiten resultiert eine Konversionstiefe von 0.6-0.9 km Tiefe. Ein zweites Quellarray, bestehend aus 12 tieferen Beben wurde zusätzlich analysiert, um eine nach ca. 0.85 s ausschließlich auf den Aufzeichnungen tieferer Beben auftretende Strukturphase zu deuten. Zusätzlich zum beam forming wurden zwei Lokalisierungsmethoden von Reflexionen und Konversionen für einfach reflektierte/konvertierte Phasen entwickelt und zur Auswertung verwendet. Während die erste, analytische Methode eine homogene Geschwindigkeit entlang des Laufwegs annimmt, wird in der zweiten Methode eine 3-D-Rastersuche ausgeführt, in der ein 1-D-Geschwindigkeitsmodell verwendet wird. Auf Grund der eindeutigen beam forming Ergebnisse und der hohen Ähnlichkeit der Wellenformen der Erdbeben, die für das Quellarray genutzt wurden, bieten Quellarrays bestehend aus Mikrobeben aus dem untersuchten Gebiet gute Möglichkeiten zur Untersuchung von Krustenstrukturen. N2 - The Vogtland, located at the border region between the Czech Republic and Germany, is known for Holocene volcanism, gas and fluid emissions as well as for reoccurring earthquake swarms, pointing towards a high geodynamic activity. During the earthquake swarm in 2008/2009, a temporary array was installed close to Rohrbach (Germany), at an epicentral distance of about 10 km from the Nový Kostel focal zone (aperture ~0.75 km). 22 events of the recorded swarm were selected to set up a source array. Source arrays are spatially clustered earthquakes, which can be used in a similar manner as receiver array recordings of single events (Green’s functions reciprocity). The application of array seismology techniques like beam forming requires similar waveforms and precisely known origin times and locations. The resemblance of waveforms was assured by visual selection of events and quantified with the calculation of cross-correlation coefficients. We observed that the different events recorded at a single station generally show greater resemblances than the recordings of one event at all stations of the receiver array. This indicates a heterogeneous subsurface beneath the receiver array and a comparably homogeneous source array volume with respect to the frequency-dependent resolution of both arrays. Beam forming was applied on the Z, N and E component recordings of the source array events at 11 stations, and the results were analysed with respect to converted or reflected crustal phases. While the theoretical back azimuth of the direct phases match the beam forming results in case of the source array analysis, in case of receiver array beam forming derivations of 15°-25° are observed. PS phases, closely following the direct P phase and presumably SP phases, arriving shortly before the direct S phase can be observed on several stations. Based on the time differences to the direct P and S phases we inferred a conversion depth of about 0.6-0.9 km. A second deeper source array was set up in order to interpret a structural phase arriving 0.85 s after the direct P phase on records of deeper events only. Additionally to the source array beam forming method an analytical method with a fixed medium velocity and a grid search method, both for determining conversion/ reflection locations of phases traveling off the direct line between source and receiver array, were developed and applied to other observed phases. In conclusion, we think that the distinct beam forming results along with the striking waveform resemblance reveal the opportunities of using source arrays consisting of small swarm events for the analysis of crustal structures. KW - seismology KW - Vogtland KW - West Bohemia KW - source array KW - beam forming KW - earthquake swarms KW - Seismologie KW - Vogtland KW - Westböhmen KW - Quellarray KW - Beamforming KW - Erdbebenschwärme KW - Schwarmbeben Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406671 ER - TY - THES A1 - Kriegerowski, Marius T1 - Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms N2 - Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network’s first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nový Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering. N2 - Erdbebenschwärme zeichnen sich durch eine große Anzahl an Ereignissen in einem relativ kleinen Zeitraum und Volumen aus. Im Gegensatz zu tektonischen Sequenzen ist in der Regel keine signifikantes Muster von Vor- und Nachbeben erkennbar. In Abwesenheit aktiven Vulkanismusses, kommen Erdbebenschwärme innerhalb kontinentaler Platten häufg an kontinentalen Verwerfungen vor, wie Beispielsweise im Bereich des Egergrabens im nordböhmischen Becken (Tschechien). Eine übliche Hypothese verbindet den Erdbebenentstehungsprozess mit Hochdruckfluiden. Der exakte kausale Zusammenhang ist jedoch häufig enigmatisch, da die zugrundeliegenden geotektonischen Prozesse im Vergleich zu tektonischen Sequenzen relativ langsam sind. Die hohe Erdbebenrate während aktiver Phasen stellt hohe Anforderungen an etablierte seismologische Routinen da diese häufg für Einzelereignisse konzipiert sind. So können sie einen hohen Aufwand bei manueller Selektion seismischer Phasen (picking) bedeuten oder rechenerisch aufwändig sein wenn volle Wellenformen verarbeitet werden sollen. Im Rahmen dieser methodologischen Thesis werden neue Ansätze zur Analyse seismischer Schwärme, sowie des zugrundeliegenden seismogenen Volumens entwickelt. Der Fokus liegt hierbei auf der gut untersuchten und überwachten nordböhmischen Schwarmregion. Ich entwickle und teste in dieser Arbeit einen innovativen Ansatz zur Detektion und Lokalisation von Erdbeben basierend auf einem tiefen konvolvierenden neuronalen Netzwerk. Diese Technologie bietet großes Potential da sie es erlaubt große Datenmengen effizient zu verarbeiten was durch die zunehmenden Datenmengen seismologischer Datenzentren immer weiter an Bedeutung gewinnt. Das entwickelte tiefe neuronale Netzwerk, trainiert auf Aufnahmen nordböhmischer Erdbebenschwärme, ist in der Lage 1000 Eregnisse in weniger als 1 Sekunde bei Verwendung voller Wellenformen zu lokalisieren und erreicht eine Präzision die vergleichbar ist mit der Genauigkeit eines Katalogs, der mittels Doppelte Differenzen Methode relokalisiert wurde. Eine weitere technologische Neuheit ist, dass die trainierten Filter der ersten Schicht des tiefen neuronalen Netzwerkes als Mustererkennungsfilter umfunktioniert werden und damit als Ereignisdetektor dienen können, ohne, dass zuvor explizit auf Rauschdaten trainiert werden muss. Für die weitere technologische Entwicklung stelle ich ein neues, automatisiertes Werkzeug für die synthetisierung realistischer Erdbebenschwarmkataloge, sowie hierauf basierender synthetischer voller Wollenform vor. Die Eingabeparameter werden durch die Geometrie des Quellvolumens, der Nukleationscharakteristik und Magnitude-Häufigkeitsverteilung definiert. Weiter können Rauschsignale realer Daten verwendet werden um äußerst realistische synthetische Daten zu generieren. Dieses Werkzeug wird verwendet um die Vollständigkeitmagnitude eines Detektors für volle Wellenformen anhand synthetischer Daten zu evaluieren. Die synthetisierten Daten sind Motiviert durch ein Hydrofrackingexperiment in Wysin (Polen). Des Weiteren stelle ich einen neuen Ansatz vor, der die Effekte der Wellenausbreitung zwischen Erdbeben und Stationen ausblendet und die Bestimmung der Dämpfung unmittelbar im Quellvolumen von Schwarmerdbeben erlaubt. Diese neue Methode benutzt das hochfrequente spektrale Verhältnis von Ereignispaaren mit gemeinsamen Strahlenwegen. Synthetische Tests zeigen, dass die Methode in der Lage ist die Dämpfung innerhalb des Quellvolumens mit hoher räumlicher Genauigkeit zu bestimmen. Weiter ist sie im Einzelnen unabhängig von der Entfernung zwischen Ereignis und Station als auch von der Komplexität der Dämpfungs und Geschwindigkeitsstruktur außerhalb des Quellvolumens. Die Anwendung auf Daten des nordböhmischen Erdbebenschwarms zeigt eine erhöhte P Phasen Dämpfung im Quellvolumen (Qp < 100) basierend auf Daten einer Station in der Nähe des Dorfes Luby (LBC). Die Wellenformen einer Station in unmittelbarer epizentraler Nähe, bei Novy Kostel (NKC), weisen eine relativ hohe Komplexität auf, was darauf hindeutet, dass seismische Wellen, die diese Station erreichen relativ stark gestreut werden im Vergleich zu anderen Stationen. Das hohe Maß an Komplexität destabilisiert die Methode und führt zu ungenauen Schätzungen an der Station NKC. Daher bedarf es einer weiteren unabhängigen Validierung der hohen Dämpfung bei gegebenen geometrischen und spektralen Voraussetzungen. Nichtsdestoweniger wurde bereits eine hohe Dämpfung im Quellvolumen der nordböhmischen Schwärme postuliert und erwartet, insbesondere im Zusammenhang mit einer Zone hoher Brüchigkeit die CO2 bei hohen Drücken beinhaltet. Die Methoden die im Rahmen dieser Thesis entwickelt werden haben das Potential unser Verständnis bezüglich der Rolle von Fluiden und Gasen bei Erdbebenschärmen innerhalb kontinentaler Platten zu verbessern. KW - attenuation tomography KW - earthquake swarms KW - deep learning KW - Dämpfungstomographie KW - Erdbebenschwärme KW - tiefes Lernen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-444040 ER -