TY - GEN A1 - Raafat, Dina A1 - Mrochen, Daniel M. A1 - Al’Sholui, Fawaz A1 - Heuser, Elisa A1 - Ryll, René A1 - Pritchett-Corning, Kathleen R. A1 - Jacob, Jens A1 - Walther, Bernd A1 - Matuschka, Franz-Rainer A1 - Richter, Dania T1 - Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats BT - Effect of habitat on the nasal S. aureus population T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 873 KW - Staphylococcus aureus KW - rat KW - clonal complex KW - host adaptation KW - livestock KW - laboratory KW - coagulation KW - immune evasion cluster KW - habitat KW - epidemiology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512379 SN - 1866-8364 IS - 2 ER - TY - JOUR A1 - Raafat, Dina A1 - Mrochen, Daniel M. A1 - Al’Sholui, Fawaz A1 - Heuser, Elisa A1 - Ryll, René A1 - Pritchett-Corning, Kathleen R. A1 - Jacob, Jens A1 - Walther, Bernd A1 - Matuschka, Franz-Rainer A1 - Richter, Dania T1 - Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats BT - Effect of habitat on the nasal S. aureus population JF - Toxins N2 - Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. KW - Staphylococcus aureus KW - rat KW - clonal complex KW - host adaptation KW - livestock KW - laboratory KW - coagulation KW - immune evasion cluster KW - habitat KW - epidemiology Y1 - 2020 U6 - https://doi.org/10.3390/toxins12020080 SN - 2072-6651 VL - 12 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lohmann, Dirk A1 - Tietjen, Britta A1 - Blaum, Niels A1 - Joubert, David F. A1 - Jeltsch, Florian T1 - Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - 1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO2 level increase in combination with changes in inter- and intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration. KW - CO2 increase KW - demographic bottleneck KW - ecohydrology KW - grid-based simulation model KW - livestock KW - precipitation pattern KW - savanna resilience KW - shrub encroachment KW - soil moisture KW - sustainable rangeland management Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2664.2012.02157.x SN - 0021-8901 VL - 49 IS - 4 SP - 814 EP - 823 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Landholm, David M. A1 - Pradhan, Prajal A1 - Wegmann, Peter A1 - Romero Sanchez, Miguel Antonio A1 - Suarez Salazar, Juan Carlos A1 - Kropp, Jürgen T1 - Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caqueta JF - Environmental research letters N2 - Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes. KW - deforestation KW - silvopastoral systems KW - greenhouse gas emissions KW - livestock KW - carbon sequestration Y1 - 2019 U6 - https://doi.org/10.1088/1748-9326/ab3db6 SN - 1748-9326 VL - 14 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hempel, Sabrina A1 - Adolphs, Julian A1 - Landwehr, Niels A1 - Janke, David A1 - Amon, Thomas T1 - How the selection of training data and modeling approach affects the estimation of ammonia emissions from a naturally ventilated dairy barn—classical statistics versus machine learning JF - Sustainability N2 - Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days. KW - livestock KW - air pollutant KW - emission modeling KW - emission inventory KW - regression KW - artificial neural network KW - random forest KW - gradient boosting KW - Gaussian process KW - training sample Y1 - 2020 U6 - https://doi.org/10.3390/su12031030 SN - 2071-1050 VL - 12 IS - 3 PB - MDPI CY - Basel ER -