TY - JOUR A1 - Martensson, Nils A1 - Föhlisch, Alexander A1 - Svensson, Svante T1 - Uppsala and Berkeley BT - two essential laboratories in the development of modern photoelectron spectroscopy JF - Journal of vacuum science & technology : JVST ; an AVS journal / A N2 - The development of modern photoelectron spectroscopy is reviewed with a special focus on the importance of research at Uppsala University and at Berkeley. The influence of two pioneers, Kai Siegbahn and Dave Shirley, is underlined. Early interaction between the two centers helped to kick-start the field. Both laboratories have continued to play an important role in the field, both in terms of creating new experimental capabilities and developing the theoretical understanding of the spectroscopic processes. KW - Electronic structure KW - Condensed matter physics KW - X-ray emission spectroscopy KW - Electron spectroscopy KW - Photoelectron spectroscopy KW - Nuclear physics KW - Storage rings KW - Synchrotron radiation KW - Gas phase KW - Surface science Y1 - 2022 U6 - https://doi.org/10.1116/6.0001879 SN - 0734-2101 SN - 1520-8559 VL - 40 IS - 4 PB - American Institute of Physics CY - New York ER - TY - JOUR A1 - Katayama, T. A1 - Anniyev, Toyli A1 - Beye, Martin A1 - Coffee, Ryan A1 - Dell'Angela, M. A1 - Föhlisch, Alexander A1 - Gladh, J. A1 - Kaya, S. A1 - Krupin, O. A1 - Nilsson, A. A1 - Nordlund, D. A1 - Schlotter, W. F. A1 - Sellberg, J. A. A1 - Sorgenfrei, Florian A1 - Turner, J. J. A1 - Wurth, W. A1 - Öström, H. A1 - Ogasawara, H. T1 - Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - We report on an experimental system designed to probe chemical reactions on solid surfaces on a sub-picosecond timescale using soft X-ray emission spectroscopy at the Linac Coherent Light Source (LCLS) free electron laser (FEL) at the SLAC National Accelerator Laboratory. We analyzed the O 1s X-ray emission spectra recorded from atomic oxygen adsorbed on a Ru(0001) surface at a synchrotron beamline (SSRL, BL13-2) and an FEL beamline (LCLS, SXR). We have demonstrated conditions that provide negligible amount of FEL induced damage of the sample. In addition we show that the setup is capable of tracking the temporal evolution of electronic structure during a surface reaction of submonolayer quantities of CO molecules desorbing from the surface. KW - X-ray emission spectroscopy KW - Surface science KW - Free electron laser KW - Ultrafast Y1 - 2013 U6 - https://doi.org/10.1016/j.elspec.2013.03.006 SN - 0368-2048 VL - 187 IS - 1 SP - 9 EP - 14 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fischer, Eric Wolfgang A1 - Werther, Michael A1 - Bouakline, Foudhil A1 - Grossmann, Frank A1 - Saalfrank, Peter T1 - Non-Markovian vibrational relaxation dynamics at surfaces JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 x 1) surface, induced by a "bath " of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrodinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with that of the recently developed coherent-state-based multi-Davydov-D2 Ansatz [Zhou et al., J. Chem. Phys. 143, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically "exact " solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation. Published under an exclusive license by AIP Publishing. KW - phonons KW - Vibrational states KW - Chemical dynamics KW - Adsorption KW - Surface science KW - Open quantum systems KW - Density-matrix KW - Coherent states KW - Markov processes Y1 - 2022 U6 - https://doi.org/10.1063/5.0092836 SN - 0021-9606 SN - 1089-7690 SN - 1520-9032 VL - 156 IS - 21 PB - AIP Publishing CY - Melville ER -