TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Tan, Li T1 - Synthesis, assembly and thermo-responsivity of polymer-functionalized magnetic cobalt nanoparticles T1 - Synthese, Assemblierung und Temperatur-Responsivität von Polymer-funktionalisierten magnetischen Cobalt Nanopartikeln N2 - This thesis mainly covers the synthesis, surface modification, magnetic-field-induced assembly and thermo-responsive functionalization of superparamagnetic Co NPs initially stabilized by hydrophobic small molecules oleic acid (OA) and trioctylphosphine oxide (TOPO), as well as the synthesis of both superparamagnetic and ferromagnetic Co NPs by using end-functionalized-polystyrene as stabilizer. Co NPs, due to their excellent magnetic and catalytic properties, have great potential application in various fields, such as ferrofluids, catalysis, and magnetic resonance imaging (MRI). Superparamagnetic Co NPs are especially interesting, since they exhibit zero coercivity. They get magnetized in an external magnetic field and reach their saturation magnetization rapidly, but no magnetic moment remains after removal of the applied magnetic field. Therefore, they do not agglomerate in the body when they are used in biomedical applications. Normally, decomposition of metallic precursors at high temperature is one of the most important methods in preparation of monodisperse magnetic NPs, providing tunability in size and shape. Hydrophobic ligands like OA, TOPO and oleylamine are often used to both control the growth of NPs and protect them from agglomeration. The as-prepared magnetic NPs can be used in biological applications as long as they are transferred into water. Moreover, their supercrystal assemblies have the potential for high density data storage and electronic devices. In addition to small molecules, polymers can also be used as surfactants for the synthesis of ferromagnetic and superparamagnetic NPs by changing the reaction conditions. Therefore, chapter 2 gives an overview on the basic concept of synthesis, surface modification and self-assembly of magnetic nanoparticles. Various examples were used to illustrate the recent work. The hydrophobic Co NPs synthesized with small molecules as surfactants limit their biological applications, which require a hydrophilic or aqueous environment. Surface modification (e.g., ligand exchange) is a general idea for either phase transition or surface-functionalization. Therefore, in chapter 3, a ligand exchange process was conducted to functionalize the surface of Co NPs. PNIPAM is one of the most popular smart polymers and its lower critical solution temperature (LCST) is around 32 °C, with a reversible change in the conformation structure between hydrophobic and hydrophilic. The novel nanocomposites of superparamagnetic Co NPs and thermo-responsive PNIPAM are of great interest. Thus, well-defined superparamagnetic Co NPs were firstly synthesized through the thermolysis of cobalt carbonyl by using OA and TOPO as surfactants. A functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator), was used to replace the original ligands. This process is rapid and facial for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. FT-IR spectroscopy showed that the TOPO was completely replaced, but a small amount of OA remained on the surface. A TGA measurement allowed the calculation of the grafting density of the initiator as around 3.2 initiator/nm2. Then, the surface-initiated ATRP was conducted for the polymerization of NIPAM on the surface of Co NPs and rendered the nanocomposites water-dispersible. A temperature-dependent dynamic light scattering study showed the aggregation behavior of PNIPAM-coated Co NPs upon heating and this process was proven to be reversible. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. In chapter 4, the magnetic-field-induced assembly of superparamagnetic cobalt nanoparticles both on solid substrates and at liquid-air interface was investigated. OA- and TOPO-coated Co NPs were synthesized via the thermolysis of cobalt carbonyl and dispersed into either hexane or toluene. The Co NP dispersion was dropped onto substrates (e.g., TEM grid, silicon wafer) and at liquid-air (water-air or ethylene glycol-air) interface. Due to the attractive dipolar interaction, 1-D chains formed in the presence of an external magnetic field. It is known that the concentration and the strength of the magnetic field can affect the assembly behavior of superparamagnetic Co NPs. Therefore, the influence of these two parameters on the morphology of the assemblies was studied. The formed 1-D chains were shorter and flexible at either lower concentration of the Co NP dispersion or lower strength of the external magnetic field due to thermal fluctuation. However, by increasing either the concentration of the NP dispersion or the strength of the applied magnetic field, these chains became longer, thicker and straighter. The reason could be that a high concentration led to a high fraction of short dipolar chains, and their interaction resulted in longer and thicker chains under applied magnetic field. On the other hand, when the magnetic field increased, the induced moments of the magnetic nanoparticles became larger, which dominated over the thermal fluctuation. Thus, the formed short chains connected to each other and grew in length. Thicker chains were also observed through chain-chain interaction. Furthermore, the induced moments of the NPs tended to direct into one direction with increased magnetic field, thus the chains were straighter. In comparison between the assembly on substrates, at water-air interface and at ethylene glycol-air interface, the assembly of Co NPs in hexane dispersion at ethylene glycol-air interface showed the most regular and homogeneous chain structures due to the better spreading of the dispersion on ethylene glycol subphase than on water subphase and substrates. The magnetic-field-induced assembly of superparamagnetic nanoparticles could provide a powerful approach for applications in data storage and electronic devices. Chapter 5 presented the synthesis of superparamagnetic and ferromagnetic cobalt nanoparticles through a dual-stage thermolysis of cobalt carbonyl (Co2(CO)8) by using polystyrene as surfactant. The amine end-functionalized polystyrene surfactants with different molecular weight were prepared via atom transfer radical polymerization technique. The molecular weight determination of polystyrene was conducted by gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry techniques. The results showed that, when the molecular weight distribution is low (Mw/Mn < 1.2), the measurement by GPC and MALDI-ToF MS provided nearly similar results. For example, the molecular weight of 10600 Da was obtained by MALDI-ToF MS, while GPC gave 10500 g/mol (Mw/Mn = 1.17). However, if the polymer is poly distributed, MALDI-ToF MS cannot provide an accurate value. This was exemplified for a polymer with a molecular weight of 3130 Da measured by MALDI-TOF MS, while GPC showed 2300 g/mol (Mw/Mn = 1.38). The size, size distribution and magnetic properties of the hybrid particles were different by changing either the molecular weight or concentration of the polymer surfactants. The analysis from TEM characterization showed that the size of cobalt nanoparticles stabilized with polystyrene of lower molecular weight (Mn = 2300 g/mol) varied from 12–22 nm, while the size with middle (Mn = 4500 g/mol) and higher molecular weight (Mn = 10500 g/mol) of polystyrene-coated cobalt nanoparticles showed little change. Magnetic measurements exhibited that the small cobalt particles (12 nm) were superparamagnetic, while larger particles (21 nm) were ferromagnetic and assembled into 1-D chains. The grafting density calculated from thermogravimetric analysis showed that a higher grafting density of polystyrene was obtained with lower molecular weight (Mn = 2300 g/mol) than those with higher molecular weight (Mn = 10500 g/mol). Due to the larger steric hindrance, polystyrene with higher molecular weight cannot form a dense shell on the surface of the nanoparticles, which resulted in a lower grafting density. Wide angle X-ray scattering measurements revealed the epsilon cobalt crystalline phases of both superparamagnetic Co NPs coated with polystyrene (Mn = 2300 g/mol) and ferromagnetic Co NPs coated with polystyrene (Mn = 10500 g/mol). Furthermore, a stability study showed that PS-Co NPs prepared with higher polymer concentration and polymer molecular weight exhibited a better stability. N2 - Im Rahmen dieser Arbeit wurden superparamagnetische Cobalt Nanopartikel (NP) synthetisiert, die Selbstassemblierung im Magnetfeld untersucht und die ursprünglichen Liganden Ölsäure (Englisch oleic acid, OA) und Trioctylphosphanoxid (TOPO) ersetzt, um eine Funktionalisierung der Nanopartikel mit einem Temperatur-responsiven Polymer zu erreichen. Außerdem wurden superparamagnetische und ferromagnetische Co NP mit Polystyrol als Stabilisator synthetisiert. Co NP haben aufgrund ihrer herausragenden magnetischen und katalytischen Eigenschaften viele potentielle Anwendungen beispielsweise als Ferrofluide, in der Katalyse und der Magnetresonanztomografie (Englisch magnetic resonance imaging, MRI). Besonders interessant sind dabei superparamagnetische Co NP, die in einem äußeren Magnetfeld magnetisiert werden, aber nach Entfernen des angelegten Magnetfelds keine Magnetisierung mehr aufweisen. Bei biomedizinischen Anwendungen aggregieren sie daher nicht im Körper. Hydrophobe Co NP, die von kleinen Molekülen stabilisiert werden, eignen sich nicht für biologische Anwendungen, für die ein hydrophiles oder wässriges Medium vonnöten ist. Kapitel 3 beschreibt einen Ligandenaustausch zur Funktionalisierung von Co Nanopartikeln und das Herstellen neuer Nanokomposite aus superparamagnetischen Co NP und Temperatur-responsivem PNIPAM. Zunächst wurden wohldefinierte superparamagnetische Co NP mit OA und TOPO als Stabilisatoren durch die Thermolyse von Cobalt Carbonyl synthetisiert. Die ursprünglichen Liganden wurden dann durch einen funktionalen Liganden mit einer Amingruppe (zum Binden an die Oberfläche) und einer 2 Brompropionat-Gruppe (Polymerisationsinitiator) ersetzt. Nach diesem schnellen und einfachen Prozess der Oberflächenfunktionalisierung können die Nanopartikel ohne Aggregation in dem polaren Lösungsmittel DMF dispergiert werden. Nach thermogravimetrischen Messungen konnte die Dichte der Initiatoren mit ungefähr 3,2 Initiatoren / nm2 berechnet werden. Anschließend wurde Oberflächen-initiierte ATRP zur Polymerisation von NIPAM durchgeführt. Temperatur-abhängige Messungen der dynamischen Lichtstreuung der nun in Wasser dispergierbaren Nanokomposite zeigte das reversible Aggregationsverhalten nach Erhitzen über 32 °C. Kapitel 4 behandelt die Untersuchung der Assemblierung von superparamagnetischen OA- und TOPO-stabilisierten Co NP im äußeren Magnetfeld sowohl auf festen Oberflächen als auch der Flüssigkeit-Luft Grenzfläche. Durch die anziehende dipolare Wechselwirkung bildeten sich im äußeren Magnetfeld 1-D Ketten. Der Einfluss der Konzentration der Dispersion und der Stärke des Magnetfelds auf die Morphologie der assemblierten Strukturen wurde untersucht. Bei niedrigerer Konzentration der Dispersion und geringerer Magnetfeldstärke bildeten sich kurze und flexible Ketten. Bei höherer Konzentration oder höherer Magnetfeldstärke wurden die Ketten länger, breiter und gerader. Andererseits sind die induzierten magnetischen Momente bei erhöhter Magnetfeldstärke größer und dominieren über die thermische Fluktuation. Daher verbinden sich die kurzen Ketten zu längeren, und dickere Ketten entstehen durch Interaktion benachbarter Ketten. Außerdem zeigen die induzierten Momente der NP verstärkt in die gleiche Richtung je größer das äußere Magnetfeld ist, weshalb die Ketten gerader werden. Im Vergleich der Assemblierung auf Substraten (TEM-Grids, Siliciumwafer), an der Wasser-Luft und Ethylenglycol-Luft Grenzfläche, zeigte die Assemblierung von Co NP aus Hexan-Dispersion an der Ethylenglycol-Luft Grenzfläche die geordnetsten und homogensten Strukturen. Kapitel 5 präsentierte die Synthese von superparamagnetischen und ferromagnetischen Cobalt Nanopartikeln durch die zwei-stufige Thermolyse von Cobalt Carbonyl (Co2(CO)8) mit Polystyrol als Stabilisator. Polystyrol Polymere mit Amin-Endgruppen wurden durch ATRP-Technik mit unterschiedlichen Molekulargewichten hergestellt. Die Größe, Größenverteilung und magnetischen Eigenschaften der hybriden Partikel haben sich mit dem Molekulargewicht und der Konzentration der Polymer-Stabilisatoren unterschieden. Eine Analyse mit Transmissionselektronenmikroskopie zeigte, dass die Größe der Co NP zwischen 12–22 nm variierte, wenn sie durch Polystyrol geringen Molekulargewichts (Mn = 2300 g/mol) stabilisiert wurden, während sich die Größe der Partikel mit Polystyrol mittleren (Mn = 4500 g/mol) und höheren (Mn = 10500 g/mol) Molekulargewichts kaum unterschied. Messungen der magnetischen Eigenschaften zeigten, dass die kleinen Cobalt Partikel (12 nm) superparamagnetisch waren, während größere Partikel (21 nm) ferromagnetisch waren und zu 1-D Ketten assemblierten. Die Dichte der Polymere auf der Oberfläche wurde nach einer thermogravimetrischen Analyse berechnet. Mit kleinem Molekulargewicht (Mn = 2300 g/mol) wurde eine höhere Dichte erreicht als mit hohem Molekulargewicht (Mn = 10500 g/mol). Durch eine stärker ausgeprägte sterische Hinderung kann ein Polymer hohen Molekulargewichts keine dichte Hülle um die Nanopartikel bilden. Das Vorliegen einer epsilon kristallinen Phase wurde durch Weitwinkel-Röntgenstreuung sowohl für superparamagnetische Co NP (mit PS Mn = 2300 g/mol) als auch ferromagnetische Co NP (mit PS Mn = 10500 g/mol) bestimmt. KW - magnetic nanoparticles KW - assembly KW - polymer KW - cobalt nanoparticles KW - magnetische Nanopartikel KW - Assemblierung KW - Polymer KW - Cobalt Nanopartikeln Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418153 ER - TY - JOUR A1 - Singh, Rajeev A1 - Mellinger, Axel T1 - Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method JF - Indian journal of physics N2 - Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values. KW - Thermoplastics KW - Thermal diffusivity KW - Thermal wave method KW - Polymer Y1 - 2015 U6 - https://doi.org/10.1007/s12648-014-0579-2 SN - 0973-1458 SN - 0974-9845 VL - 89 IS - 4 SP - 361 EP - 368 PB - Indian Association for the Cultivation of Science CY - Kolkata ER - TY - THES A1 - Schattauer, Sylvia T1 - Hybride Dünnschicht-Solarzellen aus mesoporösem Titandioxid und konjugierten Polymeren T1 - Hybrid thin solar cells comprising mesoporous titanium dioxide and conjugated polymers N2 - Das Ziel dieser Arbeit ist die Untersuchung der aktiven Komponenten und ihrer Wechselwirkungen in teilorganischen Hybrid-Solarzellen. Diese bestehen aus einer dünnen Titandioxidschicht, kombiniert mit einer dünnen Polymerschicht. Die Effizienz der Hybrid-Solarzellen wird durch die Lichtabsorption im Polymer, die Dissoziation der gebildeten Exzitonen an der aktiven Grenzfläche zwischen TiO2 und Polymer, sowie durch Generation und Extraktion freier Ladungsträger bestimmt. Zur Optimierung der Solarzellen wurden grundlegende physikalische Wechselwirkungen zwischen den verwendeten Materialen sowie der Einfluss verschiedener Herstellungsparameter untersucht. Unter anderem wurden Fragen zum optimalen Materialeinsatz und Präparationsbedingungen beantwortet sowie grundlegende Einflüsse wie Schichtmorphologie und Polymerinfiltration näher betrachtet. Zunächst wurde aus unterschiedlich hergestelltem Titandioxid (Akzeptor-Schicht) eine Auswahl für den Einsatz in Hybrid-Solarzellen getroffen. Kriterium war hierbei die unterschiedliche Morphologie aufgrund der Oberflächenbeschaffenheit, der Film-Struktur, der Kristallinität und die daraus resultierenden Solarzelleneigenschaften. Für die anschließenden Untersuchungen wurden mesoporöse TiO2–Filme aus einer neuen Nanopartikel-Synthese, welche es erlaubt, kristalline Partikel schon während der Synthese herzustellen, als Elektronenakzeptor und konjugierte Polymere auf Poly(p-Phenylen-Vinylen) (PPV)- bzw. Thiophenbasis als Donatormaterial verwendet. Bei der thermischen Behandlung der TiO2-Schichten erfolgt eine temperaturabhängige Änderung der Morphologie, jedoch nicht der Kristallstruktur. Die Auswirkungen auf die Solarzelleneigenschaften wurden dokumentiert und diskutiert. Um die Vorteile der Nanopartikel-Synthese, die Bildung kristalliner TiO2-Partikel bei tiefen Temperaturen, nutzen zu können, wurden erste Versuche zur UV-Vernetzung durchgeführt. Neben der Beschaffenheit der Oxidschicht wurde auch der Einfluss der Polymermorphologie, bedingt durch Lösungsmittelvariation und Tempertemperatur, untersucht. Hierbei konnte gezeigt werden, dass u.a. die Viskosität der Polymerlösung die Infiltration in die TiO2-Schicht und dadurch die Effizienz der Solarzelle beeinflusst. Ein weiterer Ansatz zur Erhöhung der Effizienz ist die Entwicklung neuer lochleitender Polymere, welche möglichst über einen weiten spektralen Bereich Licht absorbieren und an die Bandlücke des TiO2 angepasst sind. Hierzu wurden einige neuartige Konzepte, z.B. die Kombination von Thiophen- und Phenyl-Einheiten näher untersucht. Auch wurde die Sensibilisierung der Titandioxidschicht in Anlehnung an die höheren Effizienzen der Farbstoffzellen in Betracht gezogen. Zusammenfassend konnten im Rahmen dieser Arbeit wichtige Einflussparameter auf die Funktion hybrider Solarzellen identifiziert und z.T. näher diskutiert werden. Für einige limitierende Faktoren wurden Konzepte zur Verbesserung bzw. Vermeidung vorgestellt. N2 - The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO2 and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO2 layer has been prepared. All these properties of the TiO2 films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO2 layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO2 layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and discussed. To take advantage of the nanoparticle synthesis, the formation of crystalline TiO2 particles by UV crosslinking and first solar cell measurements are presented. In addition to the nature of the TiO2 layer, the influence of polymer morphology is investigated. Different morphologies are realized by solvent variation and thermal annealing. It is shown that, among other factors, the viscosity of the polymer solution and the infiltration into the TiO2 layer mainly affects the efficiency of the solar cell. Another approach to increase the efficiency is the development of new hole-conducting polymers that absorb over a wide spectral range and which are adjusted to the energy levels of TiO2. Also new concepts, for example, the combination of thiophene- and phenyl-units into a copolymer are investigated in more detail. In summary, important parameters influencing the properties of hybrid solar cells are identified and discussed in more detail. For some limiting factors concepts to overcome these limitations are presented. KW - hybride Solarzellen KW - Titandioxid KW - Sintern KW - Polymer KW - hybrid thin solar cells KW - titanium dioxide KW - thermal treatment KW - polymers Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52619 ER - TY - THES A1 - Saretia, Shivam T1 - Modulating ultrathin films of semi-crystalline oligomers by Langmuir technique T1 - Modulation ultradünner Filme aus semikristalliner Oligomere durch Langmuir-Technik N2 - Polymeric films and coatings derived from semi-crystalline oligomers are of relevance for medical and pharmaceutical applications. In this context, the material surface is of particular importance, as it mediates the interaction with the biological system. Two dimensional (2D) systems and ultrathin films are used to model this interface. However, conventional techniques for their preparation, such as spin coating or dip coating, have disadvantages, since the morphology and chain packing of the generated films can only be controlled to a limited extent and adsorption on the substrate used affects the behavior of the films. Detaching and transferring the films prepared by such techniques requires additional sacrificial or supporting layers, and free-standing or self supporting domains are usually of very limited lateral extension. The aim of this thesis is to study and modulate crystallization, melting, degradation and chemical reactions in ultrathin films of oligo(ε-caprolactone)s (OCL)s with different end-groups under ambient conditions. Here, oligomeric ultrathin films are assembled at the air-water interface using the Langmuir technique. The water surface allows lateral movement and aggregation of the oligomers, which, unlike solid substrates, enables dynamic physical and chemical interaction of the molecules. Parameters like surface pressure (π), temperature and mean molecular area (MMA) allow controlled assembly and manipulation of oligomer molecules when using the Langmuir technique. The π-MMA isotherms, Brewster angle microscopy (BAM), and interfacial infrared spectroscopy assist in detecting morphological and physicochemical changes in the film. Ultrathin films can be easily transferred to the solid silicon surface via Langmuir Schaefer (LS) method (horizontal substrate dipping). Here, the films transferred on silicon are investigated using atomic force microscopy (AFM) and optical microscopy and are compared to the films on the water surface. The semi-crystalline morphology (lamellar thicknesses, crystal number densities, and lateral crystal dimensions) is tuned by the chemical structure of the OCL end-groups (hydroxy or methacrylate) and by the crystallization temperature (Tc; 12 or 21 °C) or MMAs. Compression to lower MMA of ~2 Å2, results in the formation of a highly crystalline film, which consists of tightly packed single crystals. Preparation of tightly packed single crystals on a cm2 scale is not possible by conventional techniques. Upon transfer to a solid surface, these films retain their crystalline morphology whereas amorphous films undergo dewetting. The melting temperature (Tm) of OCL single crystals at the water and the solid surface is found proportional to the inverse crystal thickness and is generally lower than the Tm of bulk PCL. The impact of OCL end-groups on melting behavior is most noticeable at the air-solid interface, where the methacrylate end-capped OCL (OCDME) melted at lower temperatures than the hydroxy end-capped OCL (OCDOL). When comparing the underlying substrate, melting/recrystallization of OCL ultrathin films is possible at lower temperatures at the air water interface than at the air-solid interface, where recrystallization is not visible. Recrystallization at the air-water interface usually occurs at a higher temperature than the initial Tc. Controlled degradation is crucial for the predictable performance of degradable polymeric biomaterials. Degradation of ultrathin films is carried out under acidic (pH ~ 1) or enzymatic catalysis (lipase from Pseudomonas cepcia) on the water surface or on a silicon surface as transferred films. A high crystallinity strongly reduces the hydrolytic but not the enzymatic degradation rate. As an influence of end-groups, the methacrylate end-capped linear oligomer, OCDME (~85 ± 2 % end-group functionalization) hydrolytically degrades faster than the hydroxy end capped linear oligomer, OCDOL (~95 ± 3 % end-group functionalization) at different temperatures. Differences in the acceleration of hydrolytic degradation of semi-crystalline films were observed upon complete melting, partial melting of the crystals, or by heating to temperatures close to Tm. Therefore, films of densely packed single crystals are suitable as barrier layers with thermally switchable degradation rates. Chemical modification in ultrathin films is an intricate process applicable to connect functionalized molecules, impart stability or create stimuli-sensitive cross-links. The reaction of end-groups is explored for transferred single crystals on a solid surface or amorphous monolayer at the air-water interface. Bulky methacrylate end-groups are expelled to the crystal surface during chain-folded crystallization. The density of end-groups is inversely proportional to molecular weight and hence very pronounced for oligomers. The methacrylate end-groups at the crystal surface, which are present at high concentration, can be used for further chemical functionalization. This is demonstrated by fluorescence microscopy after reaction with fluorescein dimethacrylate. The thermoswitching behavior (melting and recrystallization) of fluorescein functionalized single crystals shows the temperature-dependent distribution of the chemically linked fluorescein moieties, which are accumulated on the surfaces of crystals, and homogeneously dispersed when the crystals are molten. In amorphous monolayers at the air-water interface, reversible cross-linking of hydroxy-terminated oligo(ε-caprolactone) monolayers using dialdehyde (glyoxal) lead to the formation of 2D networks. Pronounced contraction in the area occurred for 2D OCL films in dependence of surface pressure and time indicating the reaction progress. Cross linking inhibited crystallization and retarded enzymatic degradation of the OCL film. Altering the subphase pH to ~2 led to cleavage of the covalent acetal cross-links. Besides as model systems, these reversibly cross-linked films are applicable for drug delivery systems or cell substrates modulating adhesion at biointerfaces. N2 - Ultradünne Filme/Beschichtungen aus semikristallinen oligomeren Makromolekülen sind für medizinische und pharmazeutische Anwendungen von Bedeutung. Dabei kommt der Materialoberfläche eine besondere Bedeutung zu, da diese die Interaktion mit dem umgebenden biologischen System ermöglicht. Zur Modellierung der Oberfläche werden 2D Systeme und ultradünne Filme verwendet. Herkömmlichen Techniken zu deren Präparation wie Spin-Coating oder Dip-Coating haben jedoch Nachteile, da sich die Morphologie und Kettenpackung der erzeugten Filme nur sehr bedingt kontrollieren lässt und sich die Adsorption auf dem verwendeten Substrat auf das Verhalten der Filme auswirkt. Zum Ablösen oder Übertragen der mit Hilfe dieser Techniken hergestellten Filme sind zusätzliche Opfer- oder Transferschichten erforderlich. Zudem können mit diesen Methoden nur freistehende oder selbsttragende Filme von sehr geringer lateraler Ausdehnung hergestellt werden. Das Ziel dieser Arbeit ist es, Kristallisation, Schmelzen, Abbau und chemische Reaktionen in ultradünnen Filmen von Oligo(ε-caprolacton)en (OCL)s mit unterschiedlichen Endgruppen unter Umgebungsbedingungen zu untersuchen und zu kontrollieren. Dazu wurden ultradünne Filme an der Luft-Wasser-Grenzfläche mit der Langmuir-Technik erzeugt. Die Wasseroberfläche erlaubt eine ungestörte Bewegung und Aggregation der Oligomere, was, im Gegensatz zu festen Substraten, dynamische physikalische und chemische Interaktion der Moleküle miteinander ermöglicht. Die Langmuir-Technik erlaubt mit Hilfe von Parametern wie Temperatur, Oberflächendruck (π) und Fläche pro Wiederholheinheit eine kontrollierte Manipulation der Oligomere. Kompressionsiothermen, Brewster-Winkelmikroskopie und Grenzflächen-Infrarotspektroskopie halfen beim Nachweis morphologischer und physikalisch-chemischer Veränderungen im Film. Die ultradünnen Filme wurden über das Langmuir-Schäfer-Verfahren (Kontakt mit Substrat in paralleler Orientierung zur Grenzfläche) auf Siliziumsubstrate übertragen. Danach wurden die übertragenen Filme mittels AFM und optischer Mikroskopie untersucht und mit Filmen an der Wasseroberfläche verglichen. Die teilkristalline Morphologie (Lamellendicke, Kristallzahldichte und laterale Dimension der Kristalle) von Polymerfilmen kann durch die chemische Struktur der OCL-Endgruppen (Hydroxy oder Methacrylat) und durch die Kristallisationstemperatur (Tc; 12 oder 21 °C) oder die Fläche pro Wiederholeinheit beeinflusst werden. Die Kompression auf eine sehr kleine Fläche pro Wiederholeinheit von ~2 Å2 führt zur Bildung eines hochkristallinen Films, der aus dicht gepackten Einkristallen besteht. Eine Synthese von derartigen Filmen im cm2 Maßstab ist mit herkömmlichen Techniken nicht möglich. Nach Übertragung auf eine feste Oberfläche behielten die teilkristallinen Filme ihre Morphologie, während amorphe Filme das für Polymere charakteristische Entnetzungsverhalten aufwiesen. Die Schmelztemperaturen (Tm) von OCL-Einkristallen an der Wasser- und Festkörperoberfläche waren proportional zur inversen Kristalldicke und im Allgemeinen niedriger als die Tm von PCL im Festkörper. Der Einfluss der OCL-Endgruppen auf das Schmelzverhalten war an der Luft-Feststoff-Grenzfläche am deutlichsten, wo OCL mit Methacrylat-Endgruppen bei niedrigeren Temperaturen schmolz als OCL mit Hydroxyl-Endgruppen. Das Schmelzen/Rekristallisieren ultradünner OCL-Filme an der Luft-Wasser-Grenzfläche erfolgte bei niedrigeren Temperaturen als an der Luft-Feststoff-Grenzfläche, wo keine Rekristallisation beobachtet wurde. Die Rekristallisation geschmolzener Filme an der Luft-Wasser-Grenzfläche erfolgte normalerweise bei einer höheren Temperatur als der anfänglichen Tc. Der kontrollierte Abbau ist entscheidend für die Performance von abbaubaren Polymeren als Biomaterialien. Der Abbau ultradünner Filme erfolgte hydrolytisch entweder unter saurer (pH ~ 1) oder enzymatischer Katalyse (Lipase aus Pseudomonas cepcia) auf der Wasseroberfläche oder als übertragene Filme auf Siliziumoberflächen. Eine hohe Kristallinität reduzierte die hydrolytische Abbaurate stark, aber die enzymatische dagegen wenig. Das lineare Oligomer mit Methacrylat Endgruppen (~85 ± 2 % Endgruppenfunktionalisierung) wurde bei unterschiedlichen Temperaturen schneller hydrolytisch abgebaut als das lineare Oligomer mit Hydroxyl Endgruppen (~95 ± 3 % Endgruppenfunktionalisierung). Unterschiede in der Beschleunigung des hydrolytischen Abbaus von teilkristallinen Filmen wurden beim vollständigen Schmelzen, teilweisen Schmelzen der Kristalle, oder durch erwärmen in die Nähe von Tm beobachtet. Daher eignen sich Filme aus dicht gepackten Einkristallen als Barriereschichten mit thermisch schaltbarer Degradationsrate. Chemische Reaktionen in ultradünnen Filmen können angewandt werden, um funktionalisierte Moleküle zu verbinden und ihnen Stabilität zu verleihen oder Stimuli-sensitive Vernetzungen zu erzeugen. Hier wurden die Reaktionen der Endgruppen transferierter Einkristalle auf festen Oberflächen und amorphen Monoschichten an der Luft-Wasser-Grenzfläche untersucht. Da die Kettenenden defekte in den Einkristallen darstellen würden, werden sie bei der Kristallisation an der Kristalloberfläche angeordnet. Die Dichte der Endgruppen ist umgekehrt proportional zum Molekulargewicht und daher bei Oligomeren besonders hoch. Hier wurden mit Methacrylatendgruppen versehene OCL Moleküle verwendet. Diese Gruppen können chemisch weiter umgesetzt und für eine Funktionalisierung der Kirstalle verwendet werden. Dies wurde fluoreszenz-mikroskopisch nach der Reaktion mit Fluoresceindimethacrylat nachgewiesen. Das thermische Schalten (Schmelzen und Umkristallisieren) von Fluorescein-funktionalisierten Einkristallen erzeugt eine temperaturabhängige Verteilung der chemisch verknüpften Fluorescein-Einheiten, die sich auf den Oberflächen der Kristalle ansammeln und beim Schmelzen der Kristalle homogen dispergiert werden. In amorphen Monoschichten an der Luft-Wasser-Grenzfläche führt die reversible Vernetzung von Hydroxy-terminierten Oligo(ε-caprolacton) Monoschichten unter Verwendung eines Dialdehyds (Glyoxal) zur Bildung von zweidimensionalen (2D) Netzwerken. Bei 2D-OCL-Filmen trat eine ausgeprägte Kontraktion der Fläche in Abhängigkeit von Oberflächendruck und Zeit auf, was den Fortschritt der Reaktion anzeigte. Die Vernetzung hemmte die Kristallisation und verzögerte den enzymatischen Abbau des OCL-Films. Eine Änderung des pH-Wertes der Subphase auf ~2 führte zur Spaltung der kovalenten Acetalvernetzungen. Außer als Modellsysteme wäre der Einsatz dieser reversibel vernetzten Filme für den Einsatz als Drug-Delivery-Systeme oder als Oberflächen zur Steuerung der Adhäsion von Zellen möglich. KW - polymer KW - poly(ε-caprolactone) KW - 2D material KW - ultrathin film KW - single crystals KW - crystallization KW - melting KW - degradation KW - hydrolysis KW - reactions KW - substrate KW - end-groups KW - hydroxy KW - methacrylate KW - Polymer KW - Poly(ε-caprolacton) KW - 2D-Material KW - Beschichtungen KW - Ultradünne Filme KW - Einkristalle KW - Kristallisation KW - Schmelz KW - Abbau KW - Hydrolyse KW - Reaktion KW - Substrat KW - Hydroxyl KW - Methacrylat Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542108 ER - TY - THES A1 - Noack, Sebastian T1 - Poly(lactide)-based amphiphilic block copolymers T1 - Polylactid-basierte amphiphile Blockcopolymere BT - self-assembly and stereocomplexation in aqueous media BT - Selbstorganisation und Stereokomplexierung in wässrigem Medium N2 - Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). The PEG-PLA block copolymers were synthesized by ring-opening polymerization of lactide initiated by a PEG-OH macroinitiator. In contrast, the PLA-PEG block copolymers were produced by a Steglich-esterification of modified PLA with PEG-OH. The aqueous self-assembly at room temperature of the enantiomerically pure PLLA-based block copolymers and their stereocomplexed mixtures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Spherical micelles and worm-like structures were produced, whereby the obtained self-assembled morphologies were affected by the lactide weight fraction in the block copolymer and self-assembly time. The formation of worm-like structures increases with decreasing PLA-chain length and arises from spherical micelles, which become colloidally unstable and undergo an epitaxial fusion with other micelles. As shown by DSC experiments, the crystallinity of the corresponding PLA blocks increases within the self-assembly time. However, the stereocomplexed self-assembled structures behave differently from the parent polymers and result in irregular-shaped clusters of spherical micelles. Additionally, time-dependent self-assembly experiments showed a transformation, from already self-assembled morphologies of different shapes to more compact micelles upon stereocomplexation. In the second part of this thesis, with the objective to influence the self-assembly of PLA-based block copolymers and its stereocomplexes, poly(methyl phosphonate) (PMeP) and poly(isopropyl phosphonate) (PiPrP) were produced by ring-opening polymerization to implement an alternative to the hydrophilic block PEG. Although, the 1,8 diazabicyclo[5.4.0]unde 7 ene (DBU) or 1,5,7 triazabicyclo[4.4.0]dec-5-ene (TBD) mediated synthesis of the corresponding poly(alkyl phosphonate)s was successful, however, not so the polymerization of copolymers with PLA-based precursors (PLA-homo polymers, and PEG-PLA block copolymers). Transesterification, obtained by 1H-NMR spectroscopy, between the poly(phosphonate)- and PLA block caused a high-field shifted peak split of the methine proton in the PLA polymer chain, with split intensities depending on the used catalyst (DBU for PMeP, and TBD for PiPrP polymerization). An additional prepared block copolymer PiPrP-PLLA that wasn’t affected in its polymer sequence was finally used for self-assembly experiments with PLA-PEG and PEG-PLA mixing. This work provides a comprehensive study of the self-assembly behavior of PLA-based block copolymers influenced by various parameters such as polymer block lengths, self-assembly time, and stereocomplexation of block copolymer mixtures. N2 - Aufgrund seiner Bioverfügbarkeit und (biologischen) Abbaubarkeit stellt Polylactid (PLA) ein interessantes Polymer dar, welches bereits in Verpackungsmaterialien, chirurgische Fäden und in selbst organisierten Wirkstofftransportsystemen eingesetzt wird. Als ein Teil von amphiphilen Blockcopolymeren kann PLA die molekulare Selbstorganisation in wässrigen Lösungen wesentlich beeinflussen. Die gebildeten Strukturen sind dabei essenziell von Faktoren wie der Blockcopolymer Zusammensetzung, Amphiphilie, Proben Vorbereitung und der Enantiomerenreinheit des Monomers abhängig. Die Kenntnis über die beschriebenen Faktoren und das allgemeine Verständnis für die dazugehörigen Polymere sowie die Möglichkeit ihre Selbstorganisation zu beeinflussen, ist von entscheidender Bedeutung in biomedizinischen Anwendungen. Unterschiedliche Größen oder Formen der selbst organisierten Wirkstoffträgern haben einen erheblichen Effekt auf die Wechselwirkung mit dem entsprechenden biologischen System und somit einen essenziellen Einfluss auf den Ausgang der medikamentösen Therapie. Der erste Teil dieser Doktorarbeit beschreibt die Synthese und Untersuchung einer Serie von Poly(L-Lactid) (PLLA) und Poly(D-Lactid) (PDLA)-basierten amphiphilen Blockcopolymeren mit variierenden PLA (hydrophob) und Polyethylenglycol (PEG) (hydrophil) Kettenlägen, sowie unterschiedlichen Polymersequenzen (PEG-PLA und PLA-PEG). Die genannten PEG-PLA Blockcopolymere wurden mittels organokatalysierter ringöffnender Polymerisation (ROP) hergestellt, wobei das entsprechende PEG-OH als Makroinitiator diente. Im Gegensatz dazu mussten die entsprechenden PLA-PEG Blockcopolymere mittels Steglich Veresterung von modifizierten PLA mit PEG-OH hergestellt werden. Die Selbstorganisation der PLLA-basierten Blockcopolymeren und deren stereokomplexierten Mischungen in wässriger Lösung erfolgte unter Raumtemperatur und wurde mittels Dynamischer Lichtstreuung (DLS), Transmissionselektronenmikroskopie (TEM), Röntgenstrukturanalyse und Dynamische Differenzkalorimetrie (DSC) untersucht. Dabei wurden kugel- und wurmförmige Strukturen beobachtet, wobei die gebildeten Strukturen vom Lactid Gewichtsanteil im Polymer, sowie der Selbstorganisationszeit abhängig waren. Mit andauernder Selbstorganisation und zunehmender Kristallinität wurden die zuerst gebildeten kugelförmigen Strukturen kolloidal unstabil und es erfolgte ein epitaktisches Wachstum zu wurmförmigen Strukturen in Abhängigkeit der Lactid Kettenlänge. Die stereokomplexierten Blockcopolymer Mischungen hingegen bildeten, unabhängig von der Copolymersequenz der entsprechenden Polymer Partner, hauptsächlich unregelmäßige Ansammlungen kugelförmiger Strukturen welche den Eindruck einer Perlenkette erweckten. Mit dem Einsetzen der Stereokomplexierung zeigten zeitlich aufgelöste Selbstorganisationsexperimente eine Transformation von bereits gebildeten Strukturen verschiedenster Formen und Größen (Polymer abhängig) zu kompakten Mizellen. Im zweiten Teil dieser Doktorarbeit wurden, mit dem Ziel die Selbstorganisation von PLA-basierten Blockcopolymeren und deren Stereokomplexmischung vermehrt zu beeinflussen, zwei alternative Polymere zu PEG untersucht. Ähnlich wie PLA, konnten mittels organokatalysierter ROP Polymethylphosphonat (PMeP) und Polyisopropylphosphonat (PiPrP) erfolgreich hergestellt werden. Die Blockcopolymer Synthese mit PLA-basierten Polymervorgängern erwies sich jedoch als schwierig. Aufgrund einer Protonenpeakspaltung der Methingruppe in der PLA-Wiederholeinheit konnten mittels 1H-NMR Spektroskopie Umersterungsprozesse zwischen dem Polyalkylphosphonat- und PLA block nachgewiesen werden, welche in Abhängigkeit des verwendeten Katalysators (DBU oder TBD) unterschiedlich stark ausfielen. Das ebenfalls hergestellte PiPrP-PLLA Blockcopolymer wies keine Unregelmäßigkeiten in der Polymersequenz auf und wurde anschließend für Selbstorganisationsexperimente mit PLA-PEG und PEG-PLA genutzt. Diese Arbeit liefert eine umfangreiche Studie zur Selbstorganisation PLA-basierter Blockcopolymere und untersucht verschiedenste Einflussparameter wie Blocklängen, Selbstorganisationszeit und Stereokomplexierung in Polymermischungen. KW - polylactide KW - polymer KW - self-assembly KW - stereocomplexation KW - block copolymer KW - Polylactid KW - Polymer KW - Selbstorganisation KW - Stereokomplexierung KW - Block Copolymer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436168 ER - TY - THES A1 - Meyer, Matthias T1 - PIPOX-PEP : kontrollierte Synthese und Aggregationsverhalten von Blockcopolymeren mit schaltbarer Hydrophilie T1 - PIPOX-PEP : controlled synthesis and aggregation behaviour of blockcopolymers with switchable hydrophilicity N2 - Es wurden Poly(2-isopropyl-2-oxazolin)-Makroinitiatoren mit terminaler Ammoniumtrifluoracetat-Endgruppe synthetisiert, die anschließend für die Ammonium vermittelte NCA Polymerisation in NMP eingesetzt wurden. Die hierbei synthetisierten Poly(2-isopropyl-2-oxazolin)-block-poly(L-glutamat) (PIPOX-PEP) Blockcopolymere hatten eine Molekulargewichtsverteilung von 1,2 (UZ). Es wurde beobachtet, dass Poly(2-isopropyl-2-oxazolin) bei langen Zeiten oberhalb der LCST irreversibel sphärische Strukturen bildet, die eine hierarchische Struktur besitzen und bei denen es sich möglicherweise um "large compound micelles" handelt. PIPOX-PEP kann in wässeriger Lösung bei langen Zeiten oberhalb der LCST "cottonball" Strukturen bilden. Die Aggregate wurden mittels Lichtstreuung, NMR und TEM charakterisiert. Im Rahmen der Arbeit wurden Strukturbildungsmodelle entwickelt. N2 - A convenient procedure for the synthesis of well-defined poly(2-isopropyl-2-oxazoline)-block-poly(L-glutamate) (PIPOX-PEP) through combined cationic/anionic ring-opening polymerization is described. The key step is the preparation of an ω-(ammonium trifluoroacetate)-poly(2-isopropyl-2-oxazoline), which is used as a macroinitiator for the “ammonium-mediated” polymerization of γ-benzyl L-glutamate N-carboxyanhydride (NCA). PIPOX is a thermoresponsive polymer exhibiting a lower critical solution temperature (LCST) near human body temperature, while PEP responds to changes in pH (helix-to-coil transition). The phase behavior of aqueous PIPOX and PIPOX-PEP solutions has been characterized by means of light scattering, NMR spectroscopy, and transmission electron microscopy (TEM). Phase transition is usually reversible, but renders irreversible when solution are annealed for longer times at 65 °C, far above the LCST. Coagulate particles with hierarchical ordering in the range of nanometers to micrometers, considered as “large compound micelles” or “cottonballs”, are then produced. A tentative mechanism for the formation of such particles is described. KW - Polymer KW - Polyoxazolin KW - Polypeptid KW - Aggregate KW - polyoxazoline KW - polypeptide KW - aggregate Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10832 ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Thin-layer studies on surface functionalization of polyetherimide BT - hydrolysis versus amidation JF - Journal of materials research : JMR / Materials Research Society N2 - Among the high-performance and engineering polymers, polyimides and the closely related polyetherimide (PEI) stand out by their capability to react with nucleophiles under relatively mild conditions. By targeting the phthalimide groups in the chain backbone, post-functionalization offers a pathway to adjust surface properties such as hydrophilicity, solvent resistance, and porosity. Here, we use ultrathin PEI films on a Langmuir trough as a model system to investigate the surface functionalization with ethylene diamine and tetrakis(4-aminophenyl)porphyrin as multivalent nucleophiles. By means of AFM, Raman spectroscopy, and interfacial rheology, we show that hydrolysis enhances the chemical and mechanical stability of ultrathin films and allows for the formation of EDC/NHS-activated esters. Direct amidation of PEI was achieved in the presence of a Lewis acid catalyst, resulting in free amine groups rather than cross-linking. When comparing amidation with hydrolysis, we find a greater influence of the latter on material properties. KW - Membrane KW - Nanostructure KW - Polymer KW - Raman spectroscopy KW - Scanning probe microscopy (SPM) KW - Surface reaction KW - Thin film Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00339-7 SN - 0884-2914 SN - 2044-5326 VL - 37 IS - 1 SP - 67 EP - 76 PB - Springer CY - Berlin ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Hydrolytic stability of polyetherimide investigated in ultrathin films JF - Journal of materials research : JMR / Materials Research Society N2 - Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis. KW - 2D materials KW - Membrane KW - Polymer KW - Water KW - Nanostructure Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00267-6 SN - 0884-2914 SN - 2044-5326 VL - 36 IS - 14 SP - 2987 EP - 2994 PB - Springer CY - Berlin ER - TY - THES A1 - Kölsch, Jonas David T1 - Entwicklung neuer farbstoffmarkierter Polymere zur Visualisierung des LCST-Phasenübergangs in wässriger Lösung T1 - Development of new dye labeled polymers for visualisation of LCST transition in water N2 - Ziel der Arbeit war die Entwicklung von farbstoffmarkierten Polymeren, die einen temperaturgetriebenen Knäuel-Kollaps-Phasenübergang in wässriger Lösung ("thermo-responsive Polymere") zeigen und diesen in ein optisches Signal übersetzen können. Solche Polymere unterliegen innerhalb eines kleinen Temperaturintervalls einer massiven Änderung ihres Verhaltens, z B. ihrer Konformation und ihres Quellungsgrads. Diese Änderungen sind mit einem Wechsel der Löseeigenschaften von hydrophil zu hydrophob verbunden. Als Matrixpolymere wurden Poly-N-isopropylacrylamid (polyNIPAm), Poly(oligoethylen-glykolacrylat) (polyOEGA) und Poly(oligoethylenglykolmethacrylat) (polyOEGMA) ein-gesetzt, in die geeignete Farbstoffen durch Copolymerisation eingebaut wurden. Als besonders geeignet, um den Phasenübergang in ein optisches Signal zu übersetzen, erwiesen sich hierfür kompakte, solvatochrome Cumarin- und Naphthalimidderivate. Diese beeinträchtigten weder das Polymerisationsverhalten noch den Phasenübergang, reagierten aber sowohl bezüglich Farbe als auch Fluoreszenz stark auf die Polarität des Lösemittels. Weiterhin wurden Systeme entwickelt, die mittels Energietransfer (FRET) ein an den Phasenübergang gekoppeltes optisches Signal erzeugen. Hierbei wurde ein Cumarin als Donor- und ein Polythiophen als Akzeptorfarbstoff eingesetzt. Es zeigte sich, dass trotz scheinbarer Ähnlichkeit bestimmte Polymere ausgeprägt auf einen Temperaturstimulus mit Änderung ihrer spektralen Eigenschaften reagieren, andere aber nicht. Hierfür wurden die molekularen Ursachen untersucht. Als wahrscheinliche Gründe für das Ausbleiben einer spektralen Änderung in Oligo(ethylenglykol)-basierten Polymeren sind zum einen die fehlende Dehydratationseffektivität infolge des Fehlens eines selbstgenügenden Wasserstoffbrückenbindungsmotivs zu nennen und zum anderen die sterische Abschirmung der Farbstoffe durch die Oligo(ethylenglykol)-Seitenketten. Als Prinzipbeweis für die Nützlichkeit solcher Systeme für die Bioanalytik wurde ein System entwickelt, dass die Löslichkeitseigenschaft eines thermoresponsiven Polymers durch Antikörper-Antigen-Reaktion änderte. Die Bindung selbst kleiner Mengen eines Antikörpers ließ sich so direkt optisch auslesen und war bereits mit dem bloßen Auge zu erkennen. N2 - This work is based on different dye labeled thermo responsive polymers. These polymers are useful tool for the visualisation of the LCST phase transition in water. KW - LCST KW - Farbstoff KW - Polymer KW - Fluoreszens KW - LCST KW - dye KW - polymer KW - fluorescence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72531 ER -