TY - JOUR A1 - Weithoff, Guntram A1 - Walz, Norbert A1 - Gaedke, Ursula T1 - The intermediate disturbance hypothesis : species diversity or functional diversity N2 - Phytoplankton dynamics in a shallow eutrophic lake were investigated over a 3-year period with respect to environmental forces which drive species composition and diversity. Diversity was calculated on the basis of species as well as on the basis of their functional properties (the C-R-S-concept). Stratification and water column mixing had a strong impact on phytoplankton composition. Application of a similarity-diversity model revealed that a high diversity was a transient non-stable state, whereas drastic changes or long-lasting stable environmental conditions are characterized by low diversity. This effect was more pronounced when the diversity was calculated on the basis of the phytoplankton species functional properties. Thus, this functional approach supports the intermediate disturbance hypothesis from field data. Y1 - 2001 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Walz, Norbert T1 - Problems in estimating phytoplankton nitrogen limitation in shallow eutrophic lakes Y1 - 1999 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Wacker, Alexander T1 - The mode of nutrition of mixotrophic flagellates determines the food quality for their consumers Y1 - 2007 UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2007.01333.x/full U6 - https://doi.org/10.1111/j.1365-2435.2007.01333.x ER - TY - JOUR A1 - Weithoff, Guntram A1 - Taube, Anne A1 - Bolius, Sarah T1 - The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms BT - genetic identity, grazing loss, competition and biotic resistance JF - Aquatic Invasions N2 - The potentially toxic, invasive cyanobacterium Cylindrospermopsis raciborskii, originating from sub-tropical regions, has spread into temperate climate zones in almost all continents. Potential factors in its success are temperature, light and nutrient levels. Grazing losses through zooplankton have been measured in the laboratory but are typically not regarded as a factor in (failed) invasion success. In some potentially suitable lakes, C. raciborskii has never been found, although it is present in water bodies close by. Therefore, we tested the invasive potential of three different isolates introduced into natural plankton communities using laboratory mesocosm experiments under three grazing levels: ambient zooplankton densities, removal of large species using 100 mu m mesh and a ca. doubling of large species. Three C. raciborskii isolates originating from the same geographic region (North-East Germany) were added separately to the four replicates of each treatment and kept in semi-continuous cultures for 21 days. Two isolates disappeared from the mesocosms and were also not viable in filtered lake water indicating that the lake water itself or the switch from culture medium to lake water led to the decay of the inoculated C. raciborskii. Only one out of the three isolates persisted in the plankton communities at a rather low level and only in the treatment without larger zooplankton. This result demonstrates that under potentially suitable environmental conditions, top-down control from zooplankton might hamper the establishment of C. raciborskii. Non-metric multidimensional scaling showed distinct variation in resident phytoplankton communities between the different grazing levels, thus differential grazing impact shaped the resident community in different ways allowing C. raciborskii only to invade under competitive (= low grazing pressure) conditions. Furthermore, even after invasion failure, the temporary presence of C. raciborskii influenced the phytoplankton community. KW - alien species KW - Cyanobacteria KW - competitive resistance KW - consumptive resistance KW - herbivory KW - harmful algae KW - microbial invasion Y1 - 2017 U6 - https://doi.org/10.3391/ai.2017.12.3.07 SN - 1798-6540 SN - 1818-5487 VL - 12 SP - 333 EP - 341 PB - Regional Euro-Asian Biological Invasions centre-reabic CY - Helsinki ER - TY - JOUR A1 - Weithoff, Guntram A1 - Rocha, Marcia R. A1 - Gaedke, Ursula T1 - Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure JF - Freshwater biology N2 - In most biodiversity studies, taxonomic diversity is the measure for the multiplicity of species and is often considered to represent functional diversity. However, trends in taxonomic diversity and functional diversity may differ, for example, when many functionally similar but taxonomically different species co-occur in a community. The differences between these diversity measures are of particular interest in diversity research for understanding diversity patterns and their underlying mechanisms. We analysed a temporally highly resolved 20-year time series of lake phytoplankton to determine whether taxonomic diversity and functional diversity exhibit similar or contrasting seasonal patterns. We also calculated the functional mean of the community in n-dimensional trait space for each sampling day to gain further insights into the seasonal dynamics of the functional properties of the community. We found an overall weak positive relationship between taxonomic diversity and functional diversity with a distinct seasonal pattern. The two diversity measures showed synchronous behaviour from early spring to mid-summer and a more complex and diverging relationship from autumn to late winter. The functional mean of the community exhibited a recurrent annual pattern with the most prominent changes before and after the clear-water phase. From late autumn to winter, the functional mean of the community and functional diversity were relatively constant while taxonomic diversity declined, suggesting competitive exclusion during this period. A further decline in taxonomic diversity concomitant with increasing functional diversity in late winter to early spring is seen as a result of niche diversification together with competitive exclusion. Under these conditions, several different sets of traits are suitable to thrive, but within one set of functional traits only one, or very few, morphotypes can persist. Taxonomic diversity alone is a weak descriptor of trait diversity in phytoplankton. However, the combined analysis of taxonomic diversity and functional diversity, along with the functional mean of the community, allows for deeper insights into temporal patterns of community assembly and niche diversification. KW - algae KW - biodiversity KW - functional traits KW - seasonality KW - time series Y1 - 2015 U6 - https://doi.org/10.1111/fwb.12527 SN - 0046-5070 SN - 1365-2427 VL - 60 IS - 4 SP - 758 EP - 767 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weithoff, Guntram A1 - Neumann, Catherin A1 - Seiferth, Jacqueline A1 - Weisse, Thomas T1 - Living on the edge: reproduction, dispersal potential, maternal effects and local adaptation in aquatic, extremophilic invertebrates JF - Aquatic sciences : research across boundaries N2 - Isolated extreme habitats are ideally suited to investigate pivotal ecological processes such as niche use, local adaptation and dispersal. Extremophilic animals living in isolated habitats face the problem that dispersal is limited through the absence of suitable dispersal corridors, which in turn facilitates local adaptation. We used five rotifer isolates from extremely acidic mining lakes with a pH of below 3 as model organisms to test whether these isolates are acidotolerant or acidophilic, whether they survive and reproduce at their niche edges (here pH 2 and circum-neutral pH) and whether local adaptation has evolved. To evaluate potential dispersal limitation, we tested whether animals and their parthenogenetic eggs survive and remain reproductive or viable at unfavourable pH-conditions. All five isolates were acidophilic with a pH-optimum in the range of 4-6, which is well above the pH (< 3) of their lakes of origin. At unfavourable high pH, in four out of the five isolates parthenogenetic females produced a high number of non-viable eggs. Females and eggs produced at favourable pH (4) remained vital at an otherwise unfavourable pH of 7, indicating that for dispersal no acidic dispersal corridors are necessary. Common garden experiments revealed no clear evidence for local adaptation in any of the five isolates. Despite their acidophilic nature, all five isolates can potentially disperse via circum-neutral water bodies as long as their residence time is short, suggesting a broader dispersal niche than their realized niche. Local adaptation might have been hampered by the low population sizes of the rotifers in their isolated habitat and the short time span the mining lakes have existed. KW - Common garden experiments KW - Extreme habitats KW - Extremophiles KW - Rotifers KW - Zooplankton Y1 - 2019 U6 - https://doi.org/10.1007/s00027-019-0638-z SN - 1015-1621 SN - 1420-9055 VL - 81 IS - 3 PB - Springer CY - Basel ER - TY - JOUR A1 - Weithoff, Guntram A1 - Moser, Michael A1 - Kamjunke, Norbert A1 - Gaedke, Ursula A1 - Weisse, Thomas T1 - Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes N2 - Acidic mining lakes (pH <3) are specific habitats exhibiting particular chemical and biological characteristics. The species richness is low and mixotrophy and omnivory are common features of the plankton food web in such lakes. The plankton community structure of mining lakes of different morphometry and mixing type but similar chemical characteristics (Lake 130, Germany and Lake Langau, Austria) was investigated. The focus was laid on the species composition, the trophic relationship between the phago-mixotrophic flagellate Ochromonas sp. and bacteria and the formation of a deep chlorophyll maximum along a vertical pH-gradient. The shallow wind-exposed Lake 130 exhibited a higher species richness than Lake Langau. This increase in species richness was made up mainly by mero-planktic species, suggesting a strong benthic/littoral - pelagic coupling. Based on the field data from both lakes, a nonlinear, negative relation between bacteria and Ochromonas biomass was found, suggesting that at an Ochromonas biomass below 50 mu g CL-1. the grazing pressure on bacteria is low and with increasing Ochromonas biomass bacteria decline. Furthermore, in Lake Langau, a prominent deep chlorophyll maximum was found with chlorophyll concentrations ca. 50 times higher than in the epilimnion which was build up by the euglenophyte Lepocinclis sp. We conclude that lake morphometry, and specific abiotic characteristics such as mixing behaviour influence the community structure in these mining lakes. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00759511 U6 - https://doi.org/10.1016/j.limno.2009.11.002 SN - 0075-9511 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Lorke, Andreas A1 - Walz, Norbert T1 - Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake N2 - Water column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, the nutrient status, and the plankton community structure and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water column mixing provoking a substantial nutrient input into the euphotic zone, led to an intense net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones owing to the larger contribution of a few fast-growing species. After the second mixing event at high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged as the enhanced growth of small fast-growing was prevented by zooplankton grazing. Bacteria abundance did not increase after the second mixing, when cladoceran biomass was high. Rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community by enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacteria growth, but the effects on biomass may be dampened by high levels of herbivory. Y1 - 2000 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Planktische Räuber-Beute-Systeme : experimentelle Untersuchungen von ökologischen Synchronisationen Y1 - 2000 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Mean functional traits of lake phytoplankton reflect seasonal and inter-annual changes in nutrients, climate and herbivory JF - Journal of plankton research N2 - Trait-based approaches have become increasingly successful in community ecology. They assume that the distribution of functional traits within communities responds in a predictable way to alterations in environmental forcing and that strong forcing may accelerate such trait changes. We used high frequency measurements of phytoplankton to test these assumptions. We analyzed the seasonal and long-term dynamics of the community trait mean within a multi-dimensional trait space under alternating multifactorial environmental conditions. The community trait mean exhibited a distinct recurrent annual pattern that reflected minor changes in climate, herbivory and nutrients. Independent of early spring conditions, the community trait mean was repeatedly driven into a narrow confined area in the trait space under pronounced herbivory during the clear water phase. The speed of movement was highest at the onset and the relaxation of such strong unidirectional forcing. Thus, our data support the conceptual framework of trait-based ecology that alterations in environmental conditions are systematically tracked by adjustments in the dominant functional trait values and that the speed of trait changes depends on the kind and intensity of the selection pressure. Our approach provides a sensitive tool to detect small functional differences in the community related to subtle differences in forcing. KW - phytoplankton KW - temporal dynamics KW - climate KW - trait distribution KW - Lake Constance KW - functional traits Y1 - 2017 U6 - https://doi.org/10.1093/plankt/fbw072 SN - 0142-7873 SN - 1464-3774 VL - 39 SP - 509 EP - 517 PB - Oxford Univ. Press CY - Oxford ER -