TY - JOUR A1 - Montes, Virginie A. A1 - Hofner, Peter A1 - Oskinova, Lida A1 - Linz, Hendrik T1 - A Chandra X-Ray and infrared study of the stellar population in the high-mass star-forming region IRAS 16562-3959 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the results from Chandra X-ray observations, and near- and mid-infrared analysis, using VISTA/VVV and Spitzer/GLIMPSE catalogs, of the high-mass star-forming region IRAS 16562-3959, which contains a candidate for a high-mass protostar. We detected 249 X-ray sources within the ACIS-I field of view. The majority of the X-ray sources have low count rates (<0.638 cts/ks) and hard X-ray spectra. The search for YSOs in the region using VISTA/VVV and Spitzer/GLIMPSE catalogs resulted in a total of 636 YSOs, with 74 Class I and 562 Class II YSOs. The search for near- and mid-infrared counterparts of the X-ray sources led to a total of 165 VISTA/VVV counterparts, and a total of 151 Spitzer/GLIMPSE counterparts. The infrared analysis of the X-ray counterparts allowed us to identify an extra 91 Class III YSOs associated with the region. We conclude that a total of 727 YSOs are associated with the region, with 74 Class I, 562 Class II, and 91 Class III YSOs. We also found that the region is composed of 16 subclusters. In the vicinity of the high-mass protostar, the stellar distribution has a core-halo structure. The subcluster containing the high-mass protostar is the densest and the youngest in the region, and the high-mass protostar is located at its center. The YSOs in this cluster appear to be substantially older than the high-mass protostar. KW - young star clusters KW - massive stars KW - protostars KW - pre-main sequence stars KW - star formation KW - X-ray stars Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/ab59cf SN - 0004-637X SN - 1538-4357 VL - 888 IS - 2 PB - Institute of Physics Publ. CY - London ER - TY - THES A1 - Ramachandran, Varsha T1 - Massive star evolution, star formation, and feedback at low metallicity T1 - Massive Sternentwicklung, Sternentstehung, und das Feedback bei niedriger Metallizität BT - quantitative spectroscopy of OB stars in the Magellanic Clouds N2 - The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes. N2 - Massereiche Sterne, also Sterne, die ihre Entwicklung mit mehr als acht Sonnenmassen starten, spielen die Hauptrolle in der chemischen Entwicklung des Universums. Darüberhinaus formen sie das sie umgebende interstellare Medium, aus dem sie entstanden sind, durch ihre ionisierende Strahlung und ihre starken Massenausflüsse in Form von Sternwinden und Supernovaexplosionen, das sogenannte Feedback. Diese Arbeit verbreitert die empirische Basis für ein besseres Verständnis der Entwicklung, Entstehung und des Feedbacks massereicher Sterne bei niedriger Metallizität, wie sie auch im frühen Universum herrschte, wesentlich. Hierfür wurden die Daten von zwei großen spektroskopischen Beobachtungskampagnen in der Großen (LMC) und in der Kleinen Magellanschen Wolke (SMC) - beides Galaxien mit erniedrigter Metallizität - mittels des Non-LTE Potsdam Wolf-Rayet (PoWR) Model Atmosphere Codes quantitativ analysiert, um wesentliche Stern-, Wind- und Feedbackparameter sowie ihre statistische Verteilung zu bestimmen und damit ein globales Bild der massereichen Sterne und ihrer Wechselwirkung mit der Umgebung zu erhalten. Diese Analysen stützen sich hauptsächlich auf Spektren aus dem optischen Bereich, die mit dem Fibre Large Array Multi Element Spectrograph (FLAMES) am Very Large Telescope (VLT) von ~ 500 OBSternen in den Magellanschen Wolken aufgenommen worden, ergänzt durch UV-Spektren aus den Archiven verschiedener UV-Satelliten. Die zwei repräsentativen jungen Sternpopulationen, die untersucht wurden, gehören zur Superbubble N206 in der LMC beziehungsweise zur Supergiant Shell SMC-SGS 1 im Wing der SMC. Die analysierte Stichprobe des N206-Komplexes umfasst alle heißen massereichen Sterne vom Typ OB, Of, und Wolf-Rayet, wobei letztere weit entwickelt und durch starke Sternwinde gekennzeichnet sind. Auf Basis unsere Analysen fanden wir heraus, dass der Komplex seit 30 Mio. Jahren mehrere Sternentstehungsepisoden durchlief. Die räumliche Altersverteilung dieser Sterne über den Komplex weist möglicherweise auf getriggerte Sternentstehung infolge der Ausdehnung der Superbubble hin. Drei sehr massereiche, junge Of-Sterne in dieser Region dominieren das ionisierende und mechanische Feedback unter hunderten von anderen OBSternen in der Region. Die SMC hat eine noch niedrigere Metallizität als die LMC, was sich u.a. auch in der Sternentwicklung niederschlagen sollte. Daher wurde mittels der Daten der Spektralanalysen der Supergiant Shell SMC-SGS 1 in der SMC zusammen mit weiteren Daten aus der Literatur das am dichtesten besiedelte Hertzsprung-Russell-Diagramm der massereichen Sterne in der SMC erstellt. Der Vergleich mit Sternentwicklungsrechnungen suggeriert eine Zweiteilung der Entwicklungswege massereicher Sterne in der SMC. Dabei scheint die gemessene Rotation der Sterne überraschenderweise keinen großen Einfluss zu haben. Wir vermuten daher, dass die Masse und Metallizität der Sterne zusammen hauptverantwortlich für die beobachtete Zweiteilung sind. Desweiteren konnte erstmalig auf einer breiten Datenbasis aufbauend die Korrelation zwischen Metallizität und Stärke von OB-Sternwinden etabliert werden, allerdings sind die ermittelten Windstärken weit schwächer als vorhergesagt (Weak-Wind-Problem) und in Sternentwicklungsrechnungen verwendet. Die Alter und räumliche Verteilung von massereichen Sternen zeigen, dass Sternentstehung seit über 100 Mio. Jahren in der ruhigen Region niedriger Dichte in der SMC eher stochastisch als sequenziell voranschreitet und höher ist als von Messungen diffuser Hα-Emission abgeleitet wurde. Das Feedback in dieser Region wird aufgrund der schwachen Sternwinde durch Supernovae bestimmt, während die Ionization der gesamten Region durch einen einzigen sehr heißen und leuchtkräftigen Wolf-Rayet-Stern dominiert wird. Die niedrige Feedbackrate in metallarmen Sternpopulationen scheint für die Größe und das Überleben von Molekülwolken förderlich zu sein, sodass Sternentstehungsepisoden über einen längeren Zeitraum ablaufen. Solch ausgedehnte Sternentstehung kann dazu führen, dass es eine fortwährende Quelle von ionisierenden Photonen gibt, welche in das zirkumgalaktische Medium durch Löcher oder Kanäle entweichen können, die durch Supernovae erzeugt worden. Diese Studie regt an, dass Sternentstehungsregionen mit langer Geschichte ihre Spuren im umgebenden ISM auch bei niedriger Metallizität hinterlassen werden. Die zukünftigen großräumigen Spektroskopiestudien von weiter entfernten Galaxien mit noch geringeren Metallizitäten können weitere Einsichten in unser derzeitiges Verständnis von massereichen Sternen bringen. KW - massive stars KW - stellar feedback KW - spectroscopy KW - stellar evolution KW - star formation KW - massive Sterne KW - Sternfeedback KW - Spektroskopie KW - Sternentwicklung KW - Sternentstehung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432455 ER - TY - THES A1 - Shenar, Tomer T1 - Comprehensive analyses of massive binaries and implications on stellar evolution T1 - Umfassende Analysen massereicher Doppelsterne und Implikationen für die Sternentwicklung N2 - Via their powerful radiation, stellar winds, and supernova explosions, massive stars (Mini & 8 M☉) bear a tremendous impact on galactic evolution. It became clear in recent decades that the majority of massive stars reside in binary systems. This thesis sets as a goal to quantify the impact of binarity (i.e., the presence of a companion star) on massive stars. For this purpose, massive binary systems in the Local Group, including OB-type binaries, high mass X-ray binaries (HMXBs), and Wolf-Rayet (WR) binaries, were investigated by means of spectral, orbital, and evolutionary analyses. The spectral analyses were performed with the non-local thermodynamic equillibrium (non-LTE) Potsdam Wolf-Rayet (PoWR) model atmosphere code. Thanks to critical updates in the calculation of the hydrostatic layers, the code became a state-of-the-art tool applicable for all types of hot massive stars (Chapter 2). The eclipsing OB-type triple system δ Ori served as an intriguing test-case for the new version of the PoWR code, and provided key insights regarding the formation of X-rays in massive stars (Chapter 3). We further analyzed two prototypical HMXBs, Vela X-1 and IGR J17544-2619, and obtained fundamental conclusions regarding the dichotomy of two basic classes of HMXBs (Chapter 4). We performed an exhaustive analysis of the binary R 145 in the Large Magellanic Cloud (LMC), which was claimed to host the most massive stars known. We were able to disentangle the spectrum of the system, and performed an orbital, polarimetric, and spectral analysis, as well as an analysis of the wind-wind collision region. The true masses of the binary components turned out to be significantly lower than suggested, impacting our understanding of the initial mass function and stellar evolution at low metallicity (Chapter 5). Finally, all known WR binaries in the Small Magellanic Cloud (SMC) were analyzed. Although it was theoretical predicted that virtually all WR stars in the SMC should be formed via mass-transfer in binaries, we find that binarity was not important for the formation of the known WR stars in the SMC, implying a strong discrepancy between theory and observations (Chapter 6). N2 - Durch ihre intensive Strahlung, Sternwinde und Supernovaexplosionen tragen massereiche Sterne (Minitial & 8 M☉) erheblich zur Entwicklung von Galaxien bei. In den letzten Jahren wurde es immer klarer, dass sich die Mehrheit der massereichen Sterne in Doppelsternsystemen befindet. Die vorliegende Doktorarbeit hat das Ziel, den Einfluss dieser Tatsache auf die Entwicklung massereicher Sterne quantitativ zu untersuchen. Um dies zu erreichen, haben wir eine Analyse der Umläufe, Spektren und Entwicklung verschiedener Doppelsternsysteme in der lokalen Gruppe durchgeführt, die OB-Sterne, massereicher Röntgendoppelsterne (HMXBs) und Wolf-Rayet-(WR)-Doppelsterne einschließt. Die Spektralanalyse wurde mithilfe des Potsdam-Wolf-Rayet-(PoWR)-Modellatmosphären-Programms für Strahlungstransport in Abwesenheit von lokalem thermodynamischen Gleichgewicht (non-LTE) durchgeführt. Das PoWR-Programm wurde im Laufe der Arbeit aktualisiert, sodass die Berechnung der hydrostatischen Schichten des Sternes nun wesentlich genauer erfolgt, was die Verwendung dieses Programms für alle Typen heißer massereicher Sterne erlaubte (Kapitel 2). Das bedeckungsveränderliche Dreifachsternsystem δ Ori diente als Test für diese neue Version von PoWR, und lieferte wesentliche Informationen bezüglich der Entstehung von Röntgenstrahlung in massereichen Sternen (Kapitel 3). Die Analyse zweier prototypischer massereicher Röntgendoppelsterne, Vela X-1 und IGR J17544-2619, machte den Ursprung der Dichotomie der zwei Hauptklassen der Röntgendoppelsterne deutlich (Kapitel 4). Eine umfassende Analyse des Doppelsterns R145 in der Großen Magellanschen Wolke (LMC), der angeblich aus den massereichsten uns bekannten Sternen besteht, wurde durchgeführt. Mithilfe einer Dekomposition des Spektrums, einer Orbital- und Spektralanalyse, sowie einer Analyse der Kollision von Sternwinden in diesem System konnten wir zeigen, dass die Massen der Komponenten wesentlich kleiner sind als bisher angenommen. Dies ist ein wichtiger Beitrag zu unserem Verständnis der Anfangsmassenfunktion und der Entwicklung massereicher Sterne in Umgebungen geringer Metalizität (Kapitel 5). Schließlich wurde die Gesamtpopulation der WR-Doppelsterne in der Kleinen Magellanschen Wolke (SMC) analysiert. Im Widerspruch zur theoretischen Vorhersage, alle WR-Doppelsterne in der SMC seien dank Massentransfer in Doppelsternsystemen entstanden, finden wir, dass Massentransfer unerheblich für die Entstehung der uns bekannten WR-Sterne in der SMC war (Kapitel 6). KW - massive stars KW - Wolf-Rayet KW - stellar evolution KW - stellar winds KW - binary stars KW - massereiche Sterne KW - Wolf-Rayet KW - Sternentwicklung KW - Sternwinde KW - Doppelsterne Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-104857 ER - TY - THES A1 - Liermann, Adriane T1 - Massive stars in the Galactic Center Quintuplet cluster T1 - Massereiche Sterne im Galaktischen Zentrum - der Quintuplet-Sternhaufen N2 - The presented thesis describes the observations of the Galactic center Quintuplet cluster, the spectral analysis of the cluster Wolf-Rayet stars of the nitrogen sequence to determine their fundamental stellar parameters, and discusses the obtained results in a general context. The Quintuplet cluster was discovered in one of the first infrared surveys of the Galactic center region (Okuda et al. 1987, 1989) and was observed for this project with the ESO-VLT near-infrared integral field instrument SINFONI-SPIFFI. The subsequent data reduction was performed in parts with a self-written pipeline to obtain flux-calibrated spectra of all objects detected in the imaged field of view. First results of the observation were compiled and published in a spectral catalog of 160 flux-calibrated $K$-band spectra in the range of 1.95 to 2.45\,$\mu$m, containing 85 early-type (OB) stars, 62 late-type (KM) stars, and 13 Wolf-Rayet stars. About 100 of these stars are cataloged for the first time. The main part of the thesis project was concentrated on the analysis of the WR stars of the nitrogen sequence and one further identified emission line star (Of/WN) with tailored Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres (Hamann et al. 1995) that are applied to derive the stellar parameters of these stars. For this purpose, the atomic input data of the PoWR models had to be extended by further line transitions in the near-infrared spectral range to enable adaequate model spectra to be calculated. These models were then fitted to the observed spectra, revealing typical paramters for this class of stars. A significant amount of hydrogen of up to $X_\text{H} \sim 0.2$ by mass fraction is still present in their stellar atmospheres. The stars are also found to be very luminous ($\log{(L/L_\odot)} > 6.0$) and show mass-loss rates and wind characteristics typical for radiation-driven winds. By comparison with stellar evolutionary models (Meynet \& Maeder 2003a; Langer et al. 1994), the initial masses were estimated and indicate that the Quintuplet WN stars are descendants from the most massive O stars with $M_\text{init} > 60 M_\odot$ and their ages correspond to a cluster age of 3-5\,million years. The analysis of the individual WN stars revealed an average extinction of $A_K =3.1 \pm 0.5$\,mag ($A_V = 27 \pm 4$) towards the Quintuplet cluster. This extinction was applied to derive the stellar luminosities of the remaining early-type and late-type stars in the catalog and a Hertzsprung-Russell diagram could be compiled. Surprisingly, two stellar populations are found, a group of main sequence OB stars and a group of evolved late-type stars, i.e. red supergiants (RSG). The main sequence stars indicate a cluster age of 4 million years, which would be too young for red supergiants to be already present. A star formation event lasting for a few million years might possibly explain the Quintuplet's population and the cluster would still be considered coeval. However, the unexpected and simultaneous presence of red supergiants and Wolf-Rayet stars in the cluster points out that the details of star formation and cluster evolution are not yet well understood for the Quintuplet cluster. N2 - Die vorgelegte Arbeit befasst sich mit der Spektralanalyse der massereichen Sterne, speziell der Wolf-Rayet Sterne der Stickstoffsequenz, des Quintuplet-Sternhaufens im Galaktischen Zentrum, welches durch Staubwolken vor visuellen Beobachtungen verborgen ist. Der Sternhaufen wurde in einer der ersten Infrarot-Durchmusterungen entdeckt (Okuda et al. 1987, 1989) und f\"ur dieses Projekt mit dem Gro\ssteleskop ESO-VLT und dem Infrarotinstrument SINFONI-SPIFFI beobachtet. Die Daten wurden aufbereitet und die flusskalibrierten Spektren in einem Katalog ver\"offentlicht. Darin enthalten sind 85 Sterne fr\"uhen Spektraltyps (O- und B-Sterne), 62 Sterne sp\"aten Spektraltyps (K- und M-Sterne), sowie 13 Wolf-Rayet Sterne. Etwa 100 Sterne sind zum ersten mal detektiert und katalogisiert worden. Die flusskalibrierten Spektren der Wolf-Rayet Sterne der Stickstoffsequenz (WN) wurden mit den Potsdam Wolf-Rayet Modellen f\"ur expandierende Sternatmosph\"aren (Hamann et al. 1995) untersucht, wozu zun\"achst Atomdaten der Modelle f\"ur den Infrarotbereich erg\"anzt werden mussten. Verschiedene Modellspektren und -energieverteilungen wurden mit den Beobachtungen verglichen, um die Sternparameter Temperatur, Radius, Leuchtkraft und die Charakteristik des Sternwinds Geschwindigkeit, chemische Zusammensetzung und Massenverlustrate zu bestimmen. Der ermittelte hohe Wasserstoffgehalt der Winde der WN-Sterne zeigt, dass sie Abk\"ommlinge von massereichen O-Sternen sind, die die Hauptreihe verlassen haben. Desweiteren sind die Sterne sehr leuchtkr\"aftig ($\log(L/L_\odot) > 6$) und zeigen Massenverlustraten, die typisch sind f\"ur strahlungsgetriebenen Sternwinde. Im Vergleich mit Sternentwicklungsmodellen (Meynet \& Maeder 2003a; Langer et al. 1994) ergeben sich Anfangsmassen von $M_\text{init}>60\,M_\odot$, sowie ungef\"ahre Sternalter von 3-5 Millionen Jahren f\"ur die WN-Sterne, was dem angenommenen Altern des Quintuplet-Haufens entspricht. Durch die Analyse der spektralen Energieverteilungen der einzelnen WN-Sterne konnte eine mittlere interstellare Extinktion von $A_K =3.1 \pm 0.5$\,mag ($A_V = 27 \pm 4$\,mag) in der Richtung des Quintuplet-Haufens ermittelt und f\"ur die Bestimmung der Leuchtkr\"afte der verbleibenden Sterne des Katalog verwendet werden. Die anschlie\ss ende vorl\"aufige Analyse ergab eine Dichotomie der Sternpopulation von fr\"uhen und sp\"aten Sternen im Hertzsprung-Russell-Diagramm. W\"ahrend die OB-Sterne entsprechend der Entwicklungstheorie auf der Hauptreihe des Haufens liegen, befinden sich die KM-Sterne im entwickelten Stadium der Roten Riesen, welches f\"ur Sterne diesen Typs fr\"uhestens nach 7 Millionen Jahren erwartet wird. Somit steht die zeitgleiche Entstehung aller Sterne des Sternhaufens in Frage. Sie wird im Rahmen von Haufenzugeh\"origkeit und einer Phase ausgedehnter Sternentstehung diskutiert. Es bleibt anzuerkennen, dass die Sternentstehung und -entwicklung auch im speziellen Fall des Quintuplet-Haufens noch nicht hinreichend gut verstanden sind. KW - Galaktisches Zentrum KW - massereiche Sterne KW - Sternatmosphären KW - Sternentwicklung KW - Galactic center KW - Quintuplet cluster KW - massive stars KW - stellar atmospheres KW - stellar evolution Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-37223 ER - TY - CHAP ED - Hamann, Wolf-Rainer ED - Feldmeier, Achim ED - Oskinova, Lida T1 - Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007 N2 - Stellar winds play an important role for the evolution of massive stars and their cosmic environment. Multiple lines of evidence, coming from spectroscopy, polarimetry, variability, stellar ejecta, and hydrodynamic modeling, suggest that stellar winds are non-stationary and inhomogeneous. This is referred to as 'wind clumping'. The urgent need to understand this phenomenon is boosted by its far-reaching implications. Most importantly, all techniques to derive empirical mass-loss rates are more or less corrupted by wind clumping. Consequently, mass-loss rates are extremely uncertain. Within their range of uncertainty, completely different scenarios for the evolution of massive stars are obtained. Settling these questions for Galactic OB, LBV and Wolf-Rayet stars is prerequisite to understanding stellar clusters and galaxies, or predicting the properties of first-generation stars. In order to develop a consistent picture and understanding of clumped stellar winds, an international workshop on 'Clumping in Hot Star Winds' was held in Potsdam, Germany, from 18. - 22. June 2007. About 60 participants, comprising almost all leading experts in the field, gathered for one week of extensive exchange and discussion. The Scientific Organizing Committee (SOC) included John Brown (Glasgow), Joseph Cassinelli (Madison), Paul Crowther (Sheffield), Alex Fullerton (Baltimore), Wolf-Rainer Hamann (Potsdam, chair), Anthony Moffat (Montreal), Stan Owocki (Newark), and Joachim Puls (Munich). These proceedings contain the invited and contributed talks presented at the workshop, and document the extensive discussions. KW - Sternwinde KW - Massenverlust KW - Strahlungstransport KW - hydrodynamische Modellierung KW - massereiche Sterne KW - stellar winds KW - mass loss KW - radiative transfer KW - hydrodynamic modeling KW - massive stars Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13981 SN - 978-3-940793-33-1 PB - Universitätsverlag Potsdam CY - Potsdam ER -