TY - THES A1 - Harmanli, İpek T1 - Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis N2 - Ammonia is a chemical of fundamental importance for nature`s vital nitrogen cycle. It is crucial for the growth of living organisms as well as food and energy source. Traditionally, industrial ammonia production is predominated by Haber- Bosch process (HBP) which is based on direct conversion of N2 and H2 gas under high temperature and high pressure (~500oC, 150-300 bar). However, it is not the favorite route because of its thermodynamic and kinetic limitations, and the need for the energy intense production of hydrogen gas by reforming processes. All these disfavors of HBP open a target to search for an alternative technique to perform efficient ammonia synthesis via electrochemical catalytic processes, in particular via water electrolysis, using water as the hydrogen source to save the process from gas reforming. In this study, the investigation of the interface effects between imidazolium-based ionic liquids and the surface of porous carbon materials with a special interest in the nitrogen absorption capability. As the further step, the possibility to establish this interface as the catalytically active area for the electrochemical N2 reduction to NH3 has been evaluated. This particular combination has been chosen because the porous carbon materials and ionic liquids (IL) have a significant importance in many scientific fields including catalysis and electrocatalysis due to their special structural and physicochemical properties. Primarily, the effects of the confinement of ionic liquid (EmimOAc, 1-Ethyl-3-methylimidazolium acetate) into carbon pores have been investigated. The salt-templated porous carbons, which have different porosity (microporous and mesoporous) and nitrogen species, were used as model structures for the comparison of the IL confinement at different loadings. The nitrogen uptake of EmimOAc can be increased by about 10 times by the confinement in the pores of carbon materials compared to the bulk form. In addition, the most improved nitrogen absorption was observed by IL confinement in micropores and in nitrogen-doped carbon materials as a consequence of the maximized structural changes of IL. Furthermore, the possible use of such interfaces between EmimOAc and porous carbon for the catalytic activation of dinitrogen during the kinetically challenging NRR due to the limited gas absorption in the electrolyte, was examined. An electrocatalytic NRR system based on the conversion of water and nitrogen gas to ammonia at ambient operation conditions (1 bar, 25 °C) was performed in a setup under an applied electric potential with a single chamber electrochemical cell, which consists of the combination of EmimOAc electrolyte with the porous carbon-working electrode and without a traditional electrocatalyst. Under a potential of -3 V vs. SCE for 45 minutes, a NH3 production rate of 498.37 μg h-1 cm-2 and FE of 12.14% were achieved. The experimental observations show that an electric double-layer, which serves the catalytically active area, occurs between a microporous carbon material and ions of the EmimOAc electrolyte in the presence of sufficiently high provided electric potential. Comparing with the typical NRR systems which have been reported in the literature, the presented electrochemical ammonia synthesis approach provides a significantly higher ammonia production rate with a chance to avoid the possible kinetic limitations of NRR. In terms of operating conditions, ammonia production rate and the faradic efficiency without the need for any synthetic electrocatalyst can be resulted of electrocatalytic activation of nitrogen in the double-layer formed between carbon and IL ions. N2 - Ammoniak ist eine Chemikalie von grundlegender Bedeutung für den lebenswichtigen Stickstoffkreislauf der Natur. Es ist entscheidend für das Wachstum lebender Organismen sowie von Nahrungsmitteln und Energiequellen. Traditionell wird die industrielle Ammoniakproduktion nach dem Haber-Bosch-Verfahren (HBP) dominiert, das auf der direkten Umwandlung von N2- und H2-Gas unter hoher Temperatur und hohem Druck (~ 500 ° C, 150-300 bar) basiert. Aufgrund seiner thermodynamischen und kinetischen Einschränkungen und der Notwendigkeit einer energieintensiven Erzeugung von Wasserstoffgas durch Reformierungsprozesse ist dies jedoch nicht der bevorzugte Weg. All diese Nachteile von HBP eröffnen ein Ziel für die Suche nach einer alternativen Technik zur Durchführung einer effizienten Ammoniaksynthese über elektrochemische katalytische Prozesse, insbesondere durch Wasserelektrolyse, wobei Wasser als Wasserstoffquelle verwendet wird, um den Prozess vor einer Gasreformierung zu bewahren. In dieser Studie wurde die Untersuchung der Grenzflächeneffekte zwischen ionischen Flüssigkeiten auf Imidazoliumbasis und der Oberfläche poröser Kohlenstoffmaterialien mit besonderem Interesse an der Stickstoffabsorptionsfähigkeit untersucht. Als weiterer Schritt wurde die Möglichkeit geprüft, diese Grenzfläche als katalytisch aktiven Bereich für die elektrochemische N2-Reduktion zu NH3 zu etablieren. Diese besondere Kombination wurde gewählt, weil die porösen Kohlenstoffmaterialien und ionischen Flüssigkeiten (IL) aufgrund ihrer besonderen strukturellen und physikochemischen Eigenschaften in vielen wissenschaftlichen Bereichen, einschließlich Katalyse und Elektrokatalyse, eine bedeutende Bedeutung haben. In erster Linie wurden die Auswirkungen des Einschlusses von ionischer Flüssigkeit (EmimOAc, 1-Ethyl-3-methylimidazoliumacetat) in Kohlenstoffporen untersucht. Die porösen Kohlenstoffe mit Salzschablonen, die unterschiedliche Porosität (mikroporös und mesoporös) und Stickstoffspezies aufweisen, wurden als Modellstrukturen für den Vergleich des IL-Einschlusses bei unterschiedlichen Beladungen verwendet. Die Stickstoffaufnahme von EmimOAc kann durch den Einschluss in den Poren von Kohlenstoffmaterialien im Vergleich zur Massenform um das Zehnfache erhöht werden. Zusätzlich wurde die am besten verbesserte Stickstoffabsorption durch IL-Einschluss in Mikroporen und in stickstoffdotierten Kohlenstoffmaterialien als Folge der maximierten strukturellen Änderungen von IL beobachtet. Darüber hinaus wurde die mögliche Verwendung solcher Grenzflächen zwischen EmimOAc und porösem Kohlenstoff für die katalytische Aktivierung von Distickstoff während des kinetisch herausfordernden NRR aufgrund der begrenzten Gasabsorption im Elektrolyten untersucht. Ein elektrokatalytisches NRR-System, das auf der Umwandlung von Wasser und Stickstoffgas in Ammoniak bei Umgebungsbetriebsbedingungen (1 bar, 25 ° C) basiert, wurde in einem Aufbau unter einem angelegten elektrischen Potential mit einer elektrochemischen Einkammerzelle durchgeführt, die aus der Kombination von besteht EmimOAc-Elektrolyt mit poröser Kohlenstoff-Arbeitselektrode und ohne herkömmlichen Elektrokatalysator. Bei einem Potential von -3 V gegen SCE für 45 Minuten wurde eine NH3-Produktionsrate von 498,37 ug h & supmin; ¹ cm & supmin; ² und eine FE von 12,14% erreicht. Die experimentellen Beobachtungen zeigen, dass eine elektrische Doppelschicht, die dem katalytisch aktiven Bereich dient, zwischen einem mikroporösen Kohlenstoffmaterial und Ionen des EmimOAc-Elektrolyten in Gegenwart eines ausreichend hohen bereitgestellten elektrischen Potentials auftritt. Im Vergleich zu den typischen NRR-Systemen, über die in der Literatur berichtet wurde, bietet der vorgestellte Ansatz der elektrochemischen Ammoniaksynthese eine signifikant höhere Ammoniakproduktionsrate mit der Möglichkeit, die möglichen kinetischen Einschränkungen der NRR zu vermeiden. In Bezug auf die Betriebsbedingungen können die Ammoniakproduktionsrate und die Faradic-Effizienz ohne die Notwendigkeit eines synthetischen Elektrokatalysators aus der elektrokatalytischen Aktivierung von Stickstoff in der zwischen Kohlenstoff- und IL-Ionen gebildeten Doppelschicht resultieren. KW - Electrocatalysis KW - Ammonia KW - Ionic liquids KW - Nitrogen Physisorption KW - Porous carbon KW - Ammoniak KW - Elektrokatalyse KW - Ionische Flüssigkeiten KW - Stickstoff Physisorption KW - Poröser Kohlenstoff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483591 ER - TY - THES A1 - Pampel, Jonas T1 - Ionothermal carbon materials T1 - Ionothermale Kohlenstoffmaterialien BT - advanced synthesis and electrochemical applications BT - erweiterte Synthese und elektrochemische Anwendungen N2 - Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector. N2 - Alternative Konzepte für Energiespeicherung und –umwandlung müssen entwickelt, optimiert und praktisch angewendet werden, um den Traum einer erdölunabhängigen Energiewirtschaft zu realisieren. Poröse Kohlenstoffmaterialien spielen eine bedeutende Rolle in vielen energierelevanten Anwendungen. Speziell die porösen Eigenschaften des Kohlenstoffs, wie die spezifische Oberfläche (engl. specific surface area: SSA), das totale Porenvolumen (engl. total pore volume: TPV) und die Porengrößenverteilung, sind von großer Bedeutung für eine Maximierung der Leistung in der Endanwendung. Die vorliegende Arbeit konzentrierte sich auf den Einsatz und die Weiterentwicklung der ionothermalen Karbonisierung ausgehend von biomassebasierten Präkursoren, um eine nachhaltige Synthese hochporöser Kohlenstoffe mit einstellbarer Porosität zu ermöglichen. In der ionothermalen Synthese fungieren Salzschmelzen simultan als Lösungsmittel und Porogen während der Karbonisierung. Als Salzphase werden hierbei häufig eutektische Zinkchloridhaltige binäre Salzmischungen verwendet. In der vorliegenden Arbeit wurde im ersten Schritt die Variation der molaren Zusammensetzung der binären Salzphase als neue Methode eingeführt, um eine kontinuierliche Veränderung der Porosität des synthetisierten Kohlenstoffs zu bewirken. Diese Methode erlaubte die Synthese von Glukose-basierten Kohlenstoffen mit einstellbarer SSA zwischen ~ 900 und ~ 2100 m2 g-1. Des Weiteren wurde die Nukleinbase Adenin als Präkursor verwendet, wodurch eine Stickstoffdotierung des finalen Kohlenstoffmaterials erreicht wurde. Die damit einhergehende Veränderung der chemischen Eigenschaften des Materials führt zu neuen Anwendungsbereichen. Stickstoffdotierte Kohlen (engl. nitrogen doped carbons: NDCs) können beispielsweise die Sauerstoffreduktion katalysieren, welche auf der Kathodenseite der Brennstoffzelle abläuft. Das entwickelte Verfahren zur Einstellung der Porosität erlaubte einerseits die Synthese von Adenin-basierten NDCs mit beeindruckenden SSAs von bis zu 2900 m2 g-1 und extrem hohen TPVs von bis zu 5,19 cm3 g-1. Andererseits konnte der Einfluss der Porosität auf die Sauerstoffreduktion direkt untersucht und infolge dessen die Porosität der NDCs für diese Anwendung optimiert werden. Im zweiten Schritt wurde ein neues Verfahren entwickelt, um mittels der rotierenden Scheibenelektrode den noch nicht geklärten Mechanismus der Sauerstoffreduktion zu untersuchen, vor allem in Bezug auf edelmetallfreie Katalysatoren. Die Ergebnisse zeigten, dass der Reaktionsverlauf der Sauerstoffreduktion pH-Wert abhängig ist. Diese deutet auf verschiedene aktive Spezies in Abhängigkeit des pH-Werts hin. Im dritten Schritt wurde der gezielte Einsatz von hydrierten Salzen (Magnesium- und Calciumchlorid) als Salzphase für die ionothermale Synthese untersucht. Es konnte gezeigt werden, dass Hydrate einen sekundären Templatierungseffekt erlauben, was anhand der Koexistenz von flüssigen und festen Salzphasen erklärt werden konnte. Hierdurch konnten faserartige NDC-Materialien mit SSAs von bis zu 2780 m2 g-1 und TPVs von bis zu 3,86 cm3 g-1 synthetisiert werden. Des Weiteren wurde anhand dieser NDC-Materialien erfolgreich gezeigt, dass es möglich ist sauerstoffreduktionsaktive Spezies durch einfache Metallierung mit Eisenionen bei niedrigen Temperaturen einzuführen. Zusammenfassend konnte die vorliegende Arbeit die kostengünstige und nachhaltige Synthese hochporöser Materialien mit einstellbarer Porosität zeigen, welche in energierelevanten Bereichen eingesetzt werden können. Hierdurch kann die notwendige Erweiterung des Sektors der erneuerbaren Energien unterstützt werden. KW - porous materials KW - nitrogen doped carbons KW - ORR KW - oxygen reduction reaction KW - electrocatalysis KW - poröse Materialien KW - stickstoffdotierte Kohlenstoffe KW - ORR KW - Sauerstoff Reduktion KW - Elektrokatalyse KW - ionothermal synthesis KW - ionothermale Synthese Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101323 ER - TY - THES A1 - Wohlgemuth, Stephanie-Angelika T1 - Functional nanostructured hydrothermal carbons for sustainable technologies : heteroatom doping and superheated vapor T1 - Funktionelle, Nanostrukturierte Hydrothermal-Kohlenstoffe für Nachhaltige Technnologien: Heteroatom-Dotierung und Überkritischer Dampf N2 - The underlying motivation for the work carried out for this thesis was the growing need for more sustainable technologies. The aim was to synthesize a “palette” of functional nanomaterials using the established technique of hydrothermal carbonization (HTC). The incredible diversity of HTC was demonstrated together with small but steady advances in how HTC can be manipulated to tailor material properties for specific applications. Two main strategies were used to modify the materials obtained by HTC of glucose, a model precursor representing biomass. The first approach was the introduction of heteroatoms, or “doping” of the carbon framework. Sulfur was for the first time introduced as a dopant in hydrothermal carbon. The synthesis of sulfur and sulfur/nitrogen doped microspheres was presented whereby it was shown that the binding state of sulfur could be influenced by varying the type of sulfur source. Pyrolysis may additionally be used to tune the heteroatom binding states which move to more stable motifs with increasing pyrolysis temperature. Importantly, the presence of aromatic binding states in the as synthesized hydrothermal carbon allows for higher heteroatom retention levels after pyrolysis and hence more efficient use of dopant sources. In this regard, HTC may be considered as an “intermediate” step in the formation of conductive heteroatom doped carbon. To assess the novel hydrothermal carbons in terms of their potential for electrochemical applications, materials with defined nano-architectures and high surface areas were synthesized via templated, as well as template-free routes. Sulfur and/or nitrogen doped carbon hollow spheres (CHS) were synthesized using a polystyrene hard templating approach and doped carbon aerogels (CA) were synthesized using either the albumin directed or borax-mediated hydrothermal carbonization of glucose. Electrochemical testing showed that S/N dual doped CHS and aerogels derived via the albumin approach exhibited superior catalytic performance compared to solely nitrogen or sulfur doped counterparts in the oxygen reduction reaction (ORR) relevant to fuel cells. Using the borax mediated aerogel formation, nitrogen content and surface area could be tuned and a carbon aerogel was engineered to maximize electrochemical performance. The obtained sample exhibited drastically improved current densities compared to a platinum catalyst (but lower onset potential), as well as excellent long term stability. In the second approach HTC was carried out at elevated temperatures (550 °C) and pressure (50 bar), corresponding to the superheated vapor regime (htHTC). It was demonstrated that the carbon materials obtained via htHTC are distinct from those obtained via ltHTC and subsequent pyrolysis at 550 °C. No difference in htHTC-derived material properties could be observed between pentoses and hexoses. The material obtained from a polysaccharide exhibited a slightly lower degree of carbonization but was otherwise similar to the monosaccharide derived samples. It was shown that in addition to thermally induced carbonization at 550 °C, the SHV environment exhibits a catalytic effect on the carbonization process. The resulting materials are chemically inert (i.e. they contain a negligible amount of reactive functional groups) and possess low surface area and electronic conductivity which distinguishes them from carbon obtained from pyrolysis. Compared to the materials presented in the previous chapters on chemical modifications of hydrothermal carbon, this makes them ill-suited candidates for electronic applications like lithium ion batteries or electrocatalysts. However, htHTC derived materials could be interesting for applications that require chemical inertness but do not require specific electronic properties. The final section of this thesis therefore revisited the latex hard templating approach to synthesize carbon hollow spheres using htHTC. However, by using htHTC it was possible to carry out template removal in situ because the second heating step at 550 °C was above the polystyrene latex decomposition temperature. Preliminary tests showed that the CHS could be dispersed in an aqueous polystyrene latex without monomer penetrating into the hollow sphere voids. This leaves the stagnant air inside the CHS intact which in turn is promising for their application in heat and sound insulating coatings. Overall the work carried out in this thesis represents a noteworthy development in demonstrating the great potential of sustainable carbon materials. N2 - Das Ziel der vorgelegten Arbeit war es, mit Hilfe der Hydrothermalen Carbonisierung (HTC) eine Palette an verschiedenen Materialien herzustellen, deren physikalische und chemische Eigenschaften auf spezifische Anwendungen zugeschnitten werden können. Die Motivation hierfür stellt die Notwendigkeit, Alternativen zu Materialien zu finden, die auf fossilen Brennstoffen basieren. Dabei stellen vor allem nachhaltige Energien eine der größten Herausforderungen der Zukunft dar. HTC ist ein mildes, nachhaltiges Syntheseverfahren welches prinzipiell die Nutzung von biologischen Rohstoffen (z. B. landwirtschaftlichen Abfallprodukten) für die Herstellung von wertvollen, Kohlenstoff-basierten Materialien erlaubt. Es wurden zwei verschiedene Ansätze verwendet, um hydrothermalen Kohlenstoff zu modifizieren. Zum einen wurde HTC unter „normalen“ Bedingungen ausgeführt, d. h. bei 180 °C und einem Druck von etwa 10 bar. Der Zucker Glukose diente in allen Fällen als Kohlenstoff Vorläufer. Durch Zugabe von stickstoff und /oder schwefelhaltigen Additiven konnte dotierte Hydrothermalkohle hergestellt werden. Dotierte Kohlenstoffe sind bereits für ihre positiven Eigenschaften, wie verbesserte Leitfähigkeit oder erhöhte Stabilität, bekannt. Zusätzlich zu Stickstoff dotierter Hydrothermalkohle, die bereits von anderen Gruppen hergestellt werden konnte, wurde in dieser Arbeit zum ersten Mal Schwefel in Hydrothermalkohle eingebaut. Außerdem wurden verschiedene Ansätze verwendet, um Oberfläche und definierte Morphologie der dotierten Materialien zu erzeugen, welche wichtig für elektrochemische Anwendungen sind. Schwefel- und/oder stickstoffdotierte Kohlenstoff Nanohohlkugeln sowie Kohlenstoff Aerogele konnten hergestellt werden. Mit Hilfe von einem zusätzlichen Pyrolyseschritt (d. h. Erhitzen unter Schutzgas) konnte die Leitfähigkeit der Materialien hergestellt werden, die daraufhin als Nichtmetall-Katalysatoren für Wasserstoff-Brennstoffzellen getestet wurden. Im zweiten Ansatz wurde HTC unter extremen Bedingungen ausgeführt, d. h. bei 550 °C und einem Druck von ca. 50 bar, welches im Wasser Phasendiagram dem Bereich des Heißdampfes entspricht. Es konnte gezeigt werden, dass die so erhaltene Hydrothermalkohle ungewöhnliche Eigenschaften besitzt. So hat die Hochtemperatur-Hydrothermalkohle zwar einen hohen Kohlenstoffgehalt (mehr als 90 Massenprozent), enthält aber auch viele Wasserstoffatome und ist dadurch schlecht leitfähig. Da damit elektrochemische Anwendungen so gut wie ausgeschlossen sind, wurde die Hochtemperatur-Hydrothermalkohle für Anwendungen vorgesehen, welche chemische Stabilität aber keine Leitfähigkeit voraussetzen. So wurden beispielsweise Hochtemperatur-Kohlenstoff-Nanohohlkugeln synthetisiert, die großes Potential als schall- und wärmeisolierende Additive für Beschichtungen darstellen. Insgesamt konnten erfolgreich verschiedenste Materialien mit Hilfe von HTC hergestellt werden. Es ist zu erwarten, dass sie in Zukunft zu nachhaltigen Technologien und damit zu einem weiteren Schritt weg von fossilen Brennstoffen beitragen werden. KW - Hydrothermale Karbonisierung KW - Heteroatom-Dotierung KW - Aerogele KW - Hohlkugeln KW - Elektrokatalyse KW - Hydrothermal Carbonization KW - Heteroatom Doping KW - Aerogels KW - Hollow Spheres KW - Electrocatalysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60120 ER - TY - THES A1 - Fellinger, Tim-Patrick T1 - Hydrothermal and ionothermal carbon structures T1 - Hydrothermale und ionothermale Kohlenstoffstrukturen BT - from carbon negative materials to energy applications N2 - The needs for sustainable energy generation, but also a sustainable chemistry display the basic motivation of the current thesis. By different single investigated cases, which are all related to the element carbon, the work can be devided into two major topics. At first, the sustainable synthesis of “useful” carbon materials employing the process of hydrothermal carbonisation (HC) is described. In the second part, the synthesis of heteroatom - containing carbon materials for electrochemical and fuel cell applications employing ionic liquid precursors is presented. On base of a thorough review of the literature on hydrothermolysis and hydrothermal carbonisation of sugars in addition to the chemistry of hydroxymethylfurfural, mechanistic considerations of the formation of hydrothermal carbon are proposed. On the base of these reaction schemes, the mineral borax, is introduced as an additive for the hydrothermal carbonisation of glucose. It was found to be a highly active catalyst, resulting in decreased reaction times and increased carbon yields. The chemical impact of borax, in the following is exploited for the modification of the micro- and nanostructure of hydrothermal carbon. From the borax - mediated aggregation of those primary species, widely applicable, low density, pure hydrothermal carbon aerogels with high porosities and specific surface areas are produced. To conclude the first section of the thesis, a short series of experiments is carried out, for the purpose of demonstrating the applicability of the HC model to “real” biowaste i.e. watermelon waste as feedstock for the production of useful materials. In part two cyano - containing ionic liquids are employed as precursors for the synthesis of high - performance, heteroatom - containing carbon materials. By varying the ionic liquid precursor and the carbonisation conditions, it was possible to design highly active non - metal electrocatalyst for the reduction of oxygen. In the direct reduction of oxygen to water (like used in polymer electrolyte fuel cells), compared to commercial platinum catalysts, astonishing activities are observed. In another example the selective and very cost efficient electrochemical synthesis of hydrogen peroxide is presented. In a last example the synthesis of graphitic boron carbon nitrides from the ionic liquid 1 - Ethyl - 3 - methylimidazolium - tetracyanoborate is investigated in detail. Due to the employment of unreactive salts as a new tool to generate high surface area these materials were first time shown to be another class of non - precious metal oxygen reduction electrocatalyst. N2 - Die Notwendigkeit einer nachhaltigen Energiewirtschaft, sowie der nachhaltigen Chemie stellen die Motivation der vorgelegten Arbeit. Auf Grundlage separater Untersuchungen, die jeweils in engem Bezug zum Element Kohlenstoff stehen, kann die Arbeit in zwei Themenfelder geordnet werden. Der erste Teil behandelt die nachhaltige Herstellung nützlicher Kohlenmaterialien mit Hilfe des Verfahrens der hydrothermalen Carbonisierung. Im zweiten Teil wird die Synthese von Bor und Stickstoff angereicherten Kohlen aus ionischen Flüssigkeiten für elektrochemische Anwendungen abgehandelt. Insbesondere geht es um die Anwendung in Wasserstoff-Brennstoffzellen. Als Ergebnis einer sorgfältigen Literatur¬zusammenfassung der Bereiche Hydrothermolyse, hydrothermale Carbonisierung und Chemie des Hydroxymethylfurfurals wird ein chemisch-mechanistisches Modell zur Entstehung der Hydrothemalkohle vorgestellt. Auf der Basis dieses Modells wird ein neues Additiv zur hydrothermalen Carbonisierung von Zuckern vorgestellt. Die Verwendung des einfachen Additivs, genauer Borax, erlaubt eine wesentlich verkürzte und zu niedrigeren Temperaturen hin verschobene Prozessführung mit höheren Ausbeuten. Anhand des mechanistischen Modells wird ein Einfluss auf die Reaktion von Zuckern mit der reaktiven Kohlenvorstufe (Hydroxymethylfurfural) identifiziert. Die chemische Wirkung des Minerals Borax in der hydrothermalen Carbonisierung wird im Folgenden zur Herstellung vielfältig anwendbarer, hochporöser Kohlen mit einstellbarer Partikelgröße genutzt. Zum Abschluss des ersten Teils ist in einer Serie einfacher Experimente die Anwendbarkeit des mechanischen Modells auf die Verwendung „echter“ Biomasse in Form von Wassermelonenabfall gezeigt. Im zweiten Teil werden verschiedene cyano-haltige ionische Flüssigkeiten zur ionothermalen Synthese von Hochleistungskohlen verwendet. Durch Variation der ionischen Flüssigkeiten und Verwendung unterschiedlicher Synthesebedingungen wird die Herstellung hochaktiver, metallfreier Katalysatoren für die elektrochemische Reduktion von Sauerstoff erreicht. In der direkten Reduktion von Sauerstoff zu Wasser (wie sie in Brennstoffzellen Anwendung findet) werden, verglichen zu konventionellen Platin-basierten elektrochemischen Katalysatoren, erstaunliche Aktivitäten erreicht. In einem anderen Beispiel wird die selektive Herstellung von Wasserstoffperoxid zu sehr geringen Kosten vorgestellt. Abschließend wird anhand der Verwendung der ionischen Flüssigkeit 1-Ethyl-3-methylimidazolium-tetracyanoborat eine detaillierte Betrachtung zur Herstellung von graphitischem Borcarbonitrid vorgestellt. Unter Verwendung unreaktiver Salze, als einfaches Werkzeug zur Einführung großer inneren Oberflächen wird erstmals die elektrokatalytische Aktivität eines solchen Materials in der elektrochemischen Sauerstoffreduktion gezeigt. KW - Hydrothermalkohle KW - ionische Flüssigkeiten KW - poröse Materialien KW - Elektrokatalyse KW - hydrothermal carbon KW - ionic liquids KW - porous materials KW - electrocatalysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57825 ER -