TY - JOUR A1 - Strehmel, Veronika A1 - Laschewsky, André A1 - Wetzel, Hendrik A1 - Gornitz, Eckhard T1 - Free radical polymerization of n-butyl methacrylate in ionic liquids N2 - Ionic liquids based on imidazolium, pyridinium, and alkylammonium salts were investigated as solvents in free radical polymerization of the model monomer n-butyl methacrylate. The properties of the ionic liquids were systematically varied by changing the length of the alkyl substituents on the cations, and by employing different anions such as tetrafluoroborate, hexafluorophosphate, tosylate, triflate, alkyl sulfates and dimethyl phosphate. Results were compared to analogous polymerizations in toluene and in bulk. The solvents have no detectable influence on polymer tacticity. However, the molar masses obtained and the degree of polymerization, respectively, are very sensitive to the choice of the solvent. The degrees of polymerization are significantly higher when polymerizations were carried out in ionic liquids compared to polymerization in toluene, and can even exceed the values obtained by bulk polymerization. Imidazolium salts unsubstituted at C-2 result in an increase in the degree of polymerization of the poly(butyl methacrylate) with increasing viscosity of these ionic liquids. Methyl substitution at C-2 of the imidazolium ion results in an increase in the viscosity of the ionic liquid and in a viscosity independent degree of polymerization of the poly(butyl methacrylate). Ionic liquids based on imidazolium salts seem preferable over pyridinium and alkylammonium salts because of the higher degree of polymerization of the poly(butyl methacrylate)s obtained in the imidazolium salts. The glass transition temperatures and thermal stabilities are higher for poly(butyl methacrylate)s synthesized in the ionic liquids compared to the polymer made in toluene Y1 - 2006 UR - http://pubs.acs.org/doi/full/10.1021/ma0516945 U6 - https://doi.org/10.1021/Ma0516945 ER - TY - JOUR A1 - Strehmel, Veronika A1 - Kraudelt, Heide A1 - Wetzel, Hendrik A1 - Görnitz, Eckhard A1 - Laschewsky, André T1 - Free radical polymerization of methacrylates in ionic liquids Y1 - 2004 ER - TY - JOUR A1 - Strehmel, Veronika A1 - Kraudelt, Heide A1 - Wetzel, Hendrik A1 - Gornitz, Eckhard A1 - Laschewsky, André T1 - Free radical polymerization of methacrylates in ionic liquids Y1 - 2004 SN - 0065-7727 ER - TY - JOUR A1 - Strehmel, Veronika A1 - Sarker, A. M. A1 - Lahti, P. M. A1 - Karasz, F. E. A1 - Heydenreich, Matthias A1 - Wetzel, Hendrik A1 - Haebel, Sophie A1 - Strehmel, Bernd T1 - One- and two-photon photochemistry and photophysics of poly(arylenevinylene)s containing a biphenyl moiety N2 - Photochemical and photophysical properties were investigated for poly(arylenevinylene)s containing a flexible biphenyl "hinge" unit by applying one-photon (OP) and two-photon (TP) excitation to explore excited-state properties. The poly(arylenevinylene)s were poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(4,4'-dihexyloxy-3,3'-biph enylenevinylene)] (1), poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-dihexyloxy-3,3'-biph enylenevinylene)] (2), and poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-biphenylene-vinylene )] (3). Effective emission quantum yields and related photonic properties were evaluated on a realistic per-chromophore basis using effective conjugation lengths based on the Strickler-Berg relationship. intramolecular photocyclization was deduced to occur in the one case where the biphenyl molecular connectivity permitted the reaction, based on matrix- assisted loser desorption/ionization time-of-flight (MALDI-TOF), heteronuclear multiple-quantum coherence (HMQC)-NMR, and gel-permeation chromatography (GPC) results. The various photoprocesses could be induced by either OP or TP excitation, though the first excited singlet state is the photoactive state. The higher excitation energy 1 of the TP excited state favors indirect population of the S, state by electronic coupling between the TP and OP excited states [lambda(max)(TPE) (nm): 726; delta (GM)([9]): 1 = 229, 2 = 215, 3 = 109). Photochemical processes occurring from the lowest OP excited state (S-1) could therefore also be indirectly induced by TP excitation Y1 - 2005 SN - 1439-4235 ER - TY - JOUR A1 - Strehmel, Veronika A1 - Laschewsky, André A1 - Wetzel, Hendrik T1 - Homopolymerization of a highly polar zwitterionic methacrylate in ionic liquids and its copolymerization with a non-polar methacrylate N2 - Free radical homo- and copolymerization of the highly polar 3-(N-[2-methacryloyloxyethyl]-N,N-dimethylammonio) propane sulfonate with the nonpolar n-butylmethacrylate was investigated in the ionic liquids 1-butyl-3-methyl imidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluoro phosphate, and compared to analogous polymerizations in standard solvents. Higher molar masses are obtained for the zwitterionic homopolymer when the polymerization is carried out in an ionic liquid compared to the classical reaction in water. Although homopolymerization of the sulfobetain monomer as well as of n-butylmethacrylate results in phase separation during the polymerization process, copolymerization of a stoichiometric ratio of the two monomers in the ionic liquids produced transparent gels indicating that no macrophase separation occurs. The use of ionic liquids as reaction medium improved the copolymerization behavior of the two methacrylates significantly. Whereas only minor amounts of n-butyl methacrylate were incorporated in the copolymer when synthesized in acetonitrile, the content of the non-polar monomer units in the zwitterionic copolymer approached increasingly its content in the polymerization mixture when ionic liquids were employed as solvents Y1 - 2006 ER -