TY - JOUR A1 - Schröder, Florian A1 - Lisso, Janina A1 - Muessig, Carsten T1 - Exordium-Like1 promotes growth during low carbon availability in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Little is known about genes that control growth and development under low carbon (C) availability. The Arabidopsis (Arabidopsis thaliana) EXORDIUM-LIKE1 (EXL1) gene (At1g35140) was identified as a brassinosteroid-regulated gene in a previous study. We show here that the EXL1 protein is required for adaptation to C-and energy-limiting growth conditions. In-depth analysis of EXL1 transcript levels under various environmental conditions indicated that EXL1 expression is controlled by the C and energy status. Sugar starvation, extended night, and anoxia stress induced EXL1 gene expression. The C status also determined EXL1 protein levels. These results suggested that EXL1 is involved in the C-starvation response. Phenotypic changes of an exl1 loss-of-function mutant became evident only under corresponding experimental conditions. The mutant showed diminished biomass production in a short-day/low-light growth regime, impaired survival during extended night, and impaired survival of anoxia stress. Basic metabolic processes and signaling pathways are presumed to be barely impaired in exl1, because the mutant showed wild-type levels of major sugars, and transcript levels of only a few genes such as QUA-QUINE STARCH were altered. Our data suggest that EXL1 is part of a regulatory pathway that controls growth and development when C and energy supply is poor. Y1 - 2011 U6 - https://doi.org/10.1104/pp.111.177204 SN - 0032-0889 VL - 156 IS - 3 SP - 1620 EP - 1630 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Lisso, Janina A1 - Schröder, Florian A1 - Fisahn, Joachim A1 - Muessig, Carsten T1 - NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana JF - PLoS one N2 - The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions. Y1 - 2011 U6 - https://doi.org/10.1371/journal.pone.0026982 SN - 1932-6203 VL - 6 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lisso, Janina A1 - Schröder, Florian A1 - Müssig, Carsten T1 - EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth JF - Frontiers in plant science N2 - Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wildtype. Trehalose feeding stimulated root growth and shoot biomass production of exoplants where as it inhibited growth of the wildtype. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses. KW - EXO KW - growth KW - sugar response KW - trehalose KW - apoplast Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00219 SN - 1664-462X VL - 4 IS - 25 PB - Frontiers Research Foundation CY - Lausanne ER - TY - THES A1 - Schröder, Florian T1 - Funktionelle Charakterisierung der EXO/EXL-Proteinfamilie und NFXL2-Isoformen in Arabidopsis thaliana Y1 - 2011 CY - Potsdam ER - TY - GEN A1 - Schröder, Florian A1 - Lisso, Janina A1 - Lange, Peggy A1 - Müssig, Carsten T1 - The extracellular EXO protein mediates cell expansion in Arabidopsis leaves N2 - Background: The EXO (EXORDIUM) gene was identified as a potential mediator of brassinosteroid (BR)-promoted growth. It is part of a gene family with eight members in Arabidopsis. EXO gene expression is under control of BR, and EXO overexpression promotes shoot and root growth. In this study, the consequences of loss of EXO function are described. Results: The exo loss of function mutant showed diminished leaf and root growth and reduced biomass production. Light and scanning electron microscopy analyses revealed that impaired leaf growth is due to reduced cell expansion. Epidermis, palisade, and spongy parenchyma cells were smaller in comparison to the wild-type. The exo mutant showed reduced brassinolide-induced cotyledon and hypocotyl growth. In contrast, exo roots were significantly more sensitive to the inhibitory effect of synthetic brassinolide. Apart from reduced growth, exo did not show severe morphological abnormalities. Gene expression analyses of leaf material identified genes that showed robust EXO-dependent expression. Growth-related genes such as WAK1, EXP5, and KCS1, and genes involved in primary and secondary metabolism showed weaker expression in exo than in wild-type plants. However, the vast majority of BR-regulated genes were normally expressed in exo. HA- and GFP-tagged EXO proteins were targeted to the apoplast. Conclusion: The EXO gene is essential for cell expansion in leaves. Gene expression patterns and growth assays suggest that EXO mediates BR-induced leaf growth. However, EXO does not control BR-levels or BR-sensitivity in the shoot. EXO presumably is involved in a signalling process which coordinates BR-responses with environmental or developmental signals. The hypersensitivity of exo roots to BR suggests that EXO plays a diverse role in the control of BR responses in the root. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 139 KW - Plant transformation KW - Gene expression KW - Wall proteins KW - Thaliana KW - Brassinosteroids Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45107 ER -