TY - JOUR A1 - Coumou, Dim A1 - Lehmann, Jascha A1 - Beckmann, Johanna T1 - The weakening summer circulation in the Northern Hemisphere mid-latitudes JF - Science N2 - Rapid warming in the Arctic could influence mid-latitude circulation by reducing the poleward temperature gradient. The largest changes are generally expected in autumn or winter, but whether significant changes have occurred is debated. Here we report significant weakening of summer circulation detected in three key dynamical quantities: (i) the zonal-mean zonal wind, (ii) the eddy kinetic energy (EKE), and (iii) the amplitude of fast-moving Rossby waves. Weakening of the zonal wind is explained by a reduction in the poleward temperature gradient. Changes in Rossby waves and EKE are consistent with regression analyses of climate model projections and changes over the seasonal cycle. Monthly heat extremes are associated with low EKE, and thus the observed weakening might have contributed to more persistent heat waves in recent summers. Y1 - 2015 U6 - https://doi.org/10.1126/science.1261768 SN - 0036-8075 SN - 1095-9203 VL - 348 IS - 6232 SP - 324 EP - 327 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja T1 - Increased record-breaking precipitation events under global warming (vol 132, pg 501, 2015) T2 - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change Y1 - 2015 U6 - https://doi.org/10.1007/s10584-015-1466-3 SN - 0165-0009 SN - 1573-1480 VL - 132 IS - 4 SP - 517 EP - 518 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja T1 - Increased record-breaking precipitation events under global warming JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - In the last decade record-breaking rainfall events have occurred in many places around the world causing severe impacts to human society and the environment including agricultural losses and floodings. There is now medium confidence that human-induced greenhouse gases have contributed to changes in heavy precipitation events at the global scale. Here, we present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 % more record-breaking rainfall events over 1981-2010 compared to those expected in stationary time series. The number of record-breaking rainfall events peaked in 2010 with an estimated 26 % chance that a new rainfall record is due to long-term climate change. This increase in record-breaking rainfall is explained by a statistical model which accounts for the warming of air and associated increasing water holding capacity only. Our results suggest that whilst the number of rainfall record-breaking events can be related to natural multi-decadal variability over the period from 1901 to 1980, observed record-breaking rainfall events significantly increased afterwards consistent with rising temperatures. Y1 - 2015 U6 - https://doi.org/10.1007/s10584-015-1434-y SN - 0165-0009 SN - 1573-1480 VL - 132 IS - 4 SP - 501 EP - 515 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim T1 - The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes JF - Scientific reports N2 - Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central-to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. Y1 - 2015 U6 - https://doi.org/10.1038/srep17491 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER -