TY - GEN A1 - Schué, Emmanuelle A1 - Kopyshev, Alexey A1 - Lutz, Jean-François A1 - Börner, Hans G. T1 - Molecular bottle brushes with positioned selenols BT - Extending the toolbox of oxidative single polymer chain folding with conformation analysis by atomic force microscopy T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1397 KW - atomic force microscopy (AFM) KW - diselenide KW - grafted polymers KW - molecular bottle brushes KW - sequence-controlled polymers KW - single chain folding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516184 SN - 1866-8372 IS - 1 SP - 154 EP - 162 ER - TY - JOUR A1 - Schué, Emmanuelle A1 - Kopyshev, Alexey A1 - Lutz, Jean-François A1 - Börner, Hans G. T1 - Molecular bottle brushes with positioned selenols BT - Extending the toolbox of oxidative single polymer chain folding with conformation analysis by atomic force microscopy JF - Journal of Polymer Science N2 - A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc. KW - atomic force microscopy (AFM) KW - diselenide KW - grafted polymers KW - molecular bottle brushes KW - sequence-controlled polymers KW - single chain folding Y1 - 2020 U6 - https://doi.org/10.1002/pola.29496 SN - 2642-4169 VL - 58 IS - 1 SP - 154 EP - 162 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Simonova, Maria A1 - Ivanov, Ivan A1 - Meleshko, Tamara A1 - Kopyshev, Alexey A1 - Santer, Svetlana A1 - Yakimansky, Alexander A1 - Filippov, Alexander T1 - Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents JF - Polymers N2 - Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains. KW - molecular brushes KW - amphiphilic side chains KW - molecular hydrodynamics and KW - optics KW - conformational and hydrodynamic characteristics KW - aggregation Y1 - 2020 U6 - https://doi.org/10.3390/polym12122922 SN - 2073-4360 VL - 12 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Arya, Pooja A1 - Feldmann, David A1 - Kopyshev, Alexey A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Light driven guided and self-organized motion of mesoporous colloidal particles JF - Soft matter N2 - We report on guided and self-organized motion of ensembles of mesoporous colloidal particles that can undergo dynamic aggregation or separation upon exposure to light. The forces on particles involve the phenomenon of light-driven diffusioosmosis (LDDO) and are hydrodynamic in nature. They can be made to act passively on the ensemble as a whole but also used to establish a mutual interaction between particles. The latter scenario requires a porous colloid morphology such that the particle can act as a source or sink of a photosensitive surfactant, which drives the LDDO process. The interplay between the two modes of operation leads to fascinating possibilities of dynamical organization and manipulation of colloidal ensembles adsorbed at solid-liquid interfaces. While the passive mode can be thought of to allow for a coarse structuring of a cloud of colloids, the inter-particle mode may be used to impose a fine structure on a 2D particle grid. Local flow is used to impose and tailor interparticle interactions allowing for much larger interaction distances that can be achieved with, e.g., DLVO type of forces, and is much more versatile. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm02068c SN - 1744-683X SN - 1744-6848 VL - 16 IS - 5 SP - 1148 EP - 1155 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schimka, Selina A1 - Lomadze, Nino A1 - Rabe, Maren A1 - Kopyshev, Alexey A1 - Lehmann, Maren A1 - von Klitzing, Regine A1 - Rumyantsev, Artem M. A1 - Kramarenko, Elena Yu. A1 - Santer, Svetlana T1 - Photosensitive microgels containing azobenzene surfactants of different charges JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans- state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp04555c SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 108 EP - 117 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Loebner, Sarah A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Koch, Markus A1 - Guskova, Olga A1 - Saphiannikova, Marina A1 - Santer, Svetlana T1 - Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres BT - Calculation and Measurement of Opto-Mechanical Stresses JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 mu m in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [J. Phys. Chem. Lett. 2017, 8, 1094], we calculated the optomechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcb.7b11644 SN - 1520-6106 VL - 122 IS - 6 SP - 2001 EP - 2009 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mai, Tobias A1 - Wolski, Karol A1 - Puciul-Malinowska, Agnieszka A1 - Kopyshev, Alexey A1 - Gräf, Ralph A1 - Bruns, Michael A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Anionic polymer brushes for biomimetic calcium phosphate mineralization BT - A surface with application potential in biomaterials JF - Polymers N2 - This article describes the synthesis of anionic polymer brushes and their mineralization with calcium phosphate. The brushes are based on poly(3-sulfopropyl methacrylate potassium salt) providing a highly charged polymer brush surface. Homogeneous brushes with reproducible thicknesses are obtained via surface-initiated atom transfer radical polymerization. Mineralization with doubly concentrated simulated body fluid yields polymer/inorganic hybrid films containing AB-Type carbonated hydroxyapatite (CHAP), a material resembling the inorganic component of bone. Moreover, growth experiments using Dictyostelium discoideum amoebae demonstrate that the mineral-free and the mineral-containing polymer brushes have a good biocompatibility suggesting their use as biocompatible surfaces in implantology or related fields. KW - polymer brushes KW - calcium phosphate KW - hydroxyapatite KW - carbonated apatite KW - bone mimic KW - biocompatibility KW - Dictyostelium discoideum Y1 - 2018 U6 - https://doi.org/10.3390/polym10101165 SN - 2073-4360 VL - 10 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kopyshev, Alexey A1 - Kanevche, Katerina A1 - Lomadze, Nino A1 - Pfitzner, Emanuel A1 - Loebner, Sarah A1 - Patil, Rohan R. A1 - Genzer, Jan A1 - Heberle, Joachim A1 - Santer, Svetlana T1 - Light-Induced Structuring of Photosensitive Polymer Brushes JF - ACS Applied polymer materials N2 - We investigate light-induced irreversible structuring of surface topographies in poly(3-sulfopropyl methacrylate/potassium salt) (PSPMK) brushes on flat solid substrates prepared by surface-initiated atom transfer radical polymerization. The brushes have been loaded with azobenzene-based surfactant comprised of positively charged headgroups and hydrophobic tail. The surfactant exhibits photoresponsive properties through photoisomerization from the trans to cis states leading to significant changes in physicochemical properties of grafted polymer chains. The azobenzene surfactant enables photoresponsive behavior without introducing irreversible changes to chemical composition of the parent polymer brush. Exposing these photosensitive brushes to irradiation with UV interference beams causes the polymer brush to form surface relief grating (SRG) patterns. The cationic surfactant penetrates only similar to 25% of the upper portion of the PSPMK brush, resulting in the formation of two sections within the brush: a photoresponsive upper layer and nonfunctional buried layer, which is not affected by the UV irradiation. Using nano-FTIR spectroscopy, we characterize locally the chemical composition of the polymer brush and confirm partial penetration of the surfactant within the film. Strong optomechanical stresses take place only within the upper layer of the brush that is impregnated with the surfactants and causes surface topography alternation due to a local rupture of grafted polymer chains. The cleaved polymer chains are then removed from the surface by using a good solvent, leaving behind topographical grating on top of the nonfunctional brush layer. We demonstrate that photostructured polymer brush can be used for reversible switching of brush topography by varying external humidity. KW - photosensitive polymer brushes KW - reversible and irreversible structuring of polymer brushes KW - photosensitive azobenzene containing surfactant KW - strong polyelectrolyte brush KW - SRG formation in polymer brushes Y1 - 2019 U6 - https://doi.org/10.1021/acsapm.9b00705 SN - 2637-6105 VL - 1 IS - 11 SP - 301 EP - 3026 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Feldmann, David A1 - Arya, Pooja A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Light-driven motion of self-propelled porous Janus particles JF - Applied physics letters N2 - We introduce a versatile mechanism of light-driven self-propelled motion applied to porous Janus-type particles. The mechanism is based on the generation of local light-driven diffusio-osmotic (l-LDDO) flow around each single porous particle subjected to suitable irradiation conditions. The photosensitivity is introduced by a cationic azobenzene containing surfactant, which undergoes a photoisomerization reaction from a more hydrophobic trans-state to a rather hydrophilic cis-state under illumination with light. The negatively charged porous silica particles are dispersed in a corresponding aqueous solution and absorb molecules in their trans-state but expel them in their cis-state. During illumination with blue light triggering both trans-cis and cis-trans isomerization at the same time, the colloids start to move due to the generation of a steady-state diffusive flow of cis-isomers out of and trans-isomers into the particle. This is because a hemi-spherical metal cap partially sealing the colloid breaks the symmetry of the otherwise radially directed local flow around the particle, leading to self-propelled motion. Janus particles exhibit superdiffusive motion with a velocity of similar to 0.5 mu m/s and a persistence length of ca. 50 mu m, confined to microchannels the direction can be maintained up to 300 mu m before rotational diffusion reverts it. Particles forming dimers of different shapes can be made to travel along circular trajectories. The unique feature of this mechanism is that the strength of self-propulsion can be tuned by convenient external optical stimuli (intensity and irradiation wavelength) such that a broad variety of experimental situations can be realized in a spatiotemporal way and in situ. Y1 - 2019 U6 - https://doi.org/10.1063/1.5129238 SN - 0003-6951 SN - 1077-3118 VL - 115 IS - 26 PB - American Institute of Physics CY - Melville ER -