TY - JOUR A1 - Zhang, Kai A1 - Hu, Jiege A1 - Yang, Shuai A1 - Xu, Wei A1 - Wang, Zhichao A1 - Zhuang, Peiwen A1 - Grossart, Hans-Peter A1 - Luo, Zhuhua T1 - Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1 JF - Journal of hazardous materials N2 - Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80% of Impranil PU after 3 days of incubation at 28 celcius by breaking the carbonyl groups (1732 cm(-1)) and C-N-H bonds (1532 cm(-1) and 1247 cm(-1)) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation " was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling. KW - Impranil PU degradation KW - Lipase KW - Cutinase KW - HsbA KW - Fatty acid degradation Y1 - 2022 U6 - https://doi.org/10.1016/j.jhazmat.2022.129406 SN - 0304-3894 SN - 1873-3336 VL - 437 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Perkins, Anita K. A1 - Santos, Isaac R. A1 - Rose, Andrew L. A1 - Schulz, Kai G. A1 - Grossart, Hans-Peter A1 - Eyre, Bradley D. A1 - Kelaher, Brendan P. A1 - Oakes, Joanne M. T1 - Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches BT - a mesocosm experiment with implications for blue carbon JF - Biogeochemistry N2 - Marine macroalgae are a key primary producer in coastal ecosystems, but are often overlooked in blue carbon inventories. Large quantities of macroalgal detritus deposit on beaches, but the fate of wrack carbon (C) is little understood. If most of the wrack carbon is respired back to CO2, there would be no net carbon sequestration. However, if most of the wrack carbon is converted to bicarbonate (alkalinity) or refractory DOC, wrack deposition would represent net carbon sequestration if at least part of the metabolic products (e.g., reduced Fe and S) are permanently removed (i.e., long-term burial) and the DOC is not remineralised. To investigate the release of macroalgal C via porewater and its potential to contribute to C sequestration (blue carbon), we monitored the degradation of Ecklonia radiata in flow-through mesocosms simulating tidal flushing on sandy beaches. Over 60 days, 81% of added E. radiata organic matter (OM) decomposed. Per 1 mol of detritus C, the degradation produced 0.48 +/- 0.34 mol C of dissolved organic carbon (DOC) (59%) and 0.25 +/- 0.07 mol C of dissolved inorganic carbon (DIC) (31%) in porewater, and a small amount of CO2 (0.3 +/- 0.0 mol C; ca. 3%) which was emitted to the atmosphere. A significant amount of carbonate alkalinity was found in porewater, equating to 33% (0.27 +/- 0.05 mol C) of the total degraded C. The degradation occurred in two phases. In the first phase (days 0-3), 27% of the OM degraded, releasing highly reactive DOC. In the second phase (days 4-60), the labile DOC was converted to DIC. The mechanisms underlying E. radiata degradation were sulphate reduction and ammonification. It is likely that the carbonate alkalinity was primarily produced through sulphate reduction. The formation of carbonate alkalinity and semi-labile or refractory DOC from beach wrack has the potential to play an overlooked role in coastal carbon cycling and contribute to marine carbon sequestration. KW - Tidal pumping KW - Organic matter degradation KW - Carbon cycle KW - Mineralisation KW - Porewater exchange KW - Submarine groundwater discharge Y1 - 2022 U6 - https://doi.org/10.1007/s10533-022-00946-4 SN - 0168-2563 SN - 1573-515X VL - 160 IS - 2 SP - 159 EP - 175 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hilt, Sabine A1 - Grossart, Hans-Peter A1 - McGinnis, Daniel F. A1 - Keppler, Frank T1 - Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems JF - Limnology and oceanography N2 - Methane (CH4) from aquatic ecosystems contributes to about half of total global CH4 emissions to the atmosphere. Until recently, aquatic biogenic CH4 production was exclusively attributed to methanogenic archaea living under anoxic or suboxic conditions in sediments, bottom waters, and wetlands. However, evidence for oxic CH4 production (OMP) in freshwater, brackish, and marine habitats is increasing. Possible sources were found to be driven by various planktonic organisms supporting different OMP mechanisms. Surprisingly, submerged macrophytes have been fully ignored in studies on OMP, yet they are key components of littoral zones of ponds, lakes, and coastal systems. High CH4 concentrations in these zones have been attributed to organic substrate production promoting classic methanogenesis in the absence of oxygen. Here, we review existing studies and argue that, similar to terrestrial plants and phytoplankton, macroalgae and submerged macrophytes may directly or indirectly contribute to CH4 formation in oxic waters. We propose several potential direct and indirect mechanisms: (1) direct production of CH4; (2) production of CH4 precursors and facilitation of their bacterial breakdown or chemical conversion; (3) facilitation of classic methanogenesis; and (4) facilitation of CH4 ebullition. As submerged macrophytes occur in many freshwater and marine habitats, they are important in global carbon budgets and can strongly vary in their abundance due to seasonal and boom-bust dynamics. Knowledge on their contribution to OMP is therefore essential to gain a better understanding of spatial and temporal dynamics of CH4 emissions and thus to substantially reduce current uncertainties when estimating global CH4 emissions from aquatic ecosystems. Y1 - 2022 U6 - https://doi.org/10.1002/lno.12095 SN - 0024-3590 SN - 1939-5590 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Schorn, Sina A1 - Salman-Carvalho, Verena A1 - Littmann, Sten A1 - Ionescu, Danny A1 - Grossart, Hans-Peter A1 - Cypionka, Heribert T1 - Cell architecture of the giant sulfur bacterium achromatium oxaliferum BT - Extra-cytoplasmic localization of calcium carbonate bodies T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1356 KW - sulfur-bacteria KW - calcium carbonate inclusions KW - extra-cytoplasmic pockets KW - calcite Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549935 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Schorn, Sina A1 - Salman-Carvalho, Verena A1 - Littmann, Sten A1 - Ionescu, Danny A1 - Grossart, Hans-Peter A1 - Cypionka, Heribert T1 - Cell architecture of the giant sulfur bacterium achromatium oxaliferum BT - Extra-cytoplasmic localization of calcium carbonate bodies JF - FEMS Microbiology Ecology N2 - Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes. KW - sulfur-bacteria KW - calcium carbonate inclusions KW - extra-cytoplasmic pockets KW - calcite Y1 - 2019 U6 - https://doi.org/10.1093/femsec/fiz200 SN - 1574-6941 VL - 96 IS - 2 SP - 1 EP - 8 PB - Oxford University Press CY - Oxford ER - TY - GEN A1 - Masigol, Hossein A1 - Khodaparast, Seyed Akbar A1 - Mostowfizadeh-Ghalamfarsa, Reza A1 - Rojas-Jimenez, Keilor A1 - Woodhouse, Jason Nicholas A1 - Neubauer, Darshan A1 - Grossart, Hans-Peter T1 - Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1395 KW - Achlya KW - Saprolegnia KW - aquatic ecosystems KW - carbon cycling KW - polymer degradation KW - Saprolegniaceae KW - Achlyaceae Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515820 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Masigol, Hossein A1 - Khodaparast, Seyed Akbar A1 - Mostowfizadeh-Ghalamfarsa, Reza A1 - Rojas-Jimenez, Keilor A1 - Woodhouse, Jason Nicholas A1 - Neubauer, Darshan A1 - Grossart, Hans-Peter T1 - Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran JF - Aquatic Ecology N2 - Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems. KW - Achlya KW - Saprolegnia KW - aquatic ecosystems KW - carbon cycling KW - polymer degradation KW - Saprolegniaceae KW - Achlyaceae Y1 - 2020 U6 - https://doi.org/10.1007/s10452-019-09745-w SN - 1573-5125 SN - 1386-2588 VL - 54 IS - 1 SP - 323 EP - 336 PB - Springer Science CY - Dordrecht ER - TY - JOUR A1 - Aichner, Bernhard A1 - Dubbert, David A1 - Kiel, Christine A1 - Kohnert, Katrin A1 - Ogashawara, Igor A1 - Jechow, Andreas A1 - Harpenslager, Sarah-Faye A1 - Hölker, Franz A1 - Nejstgaard, Jens Christian A1 - Grossart, Hans-Peter A1 - Singer, Gabriel A1 - Wollrab, Sabine A1 - Berger, Stella Angela T1 - Spatial and seasonal patterns of water isotopes in northeastern German lakes JF - Earth system science data : ESSD N2 - Water stable isotopes (delta O-18 and delta H-2) were analyzed in samples collected in lakes, associated with riverine systems in northeastern Germany, throughout 2020. The dataset (Aichner et al., 2021; https://doi.org/10.1594/PANGAEA.935633) is derived from water samples collected at (a) lake shores (sampled in March and July 2020), (b) buoys which were temporarily installed in deep parts of the lake (sampled monthly from March to October 2020), (c) multiple spatially distributed spots in four selected lakes (in September 2020), and (d) the outflow of Muggelsee (sampled biweekly from March 2020 to January 2021). At shores, water was sampled with a pipette from 40-60 cm below the water surface and directly transferred into a measurement vial, while at buoys a Limnos water sampler was used to obtain samples from 1 m below the surface. Isotope analysis was conducted at IGB Berlin, using a Picarro L2130-i cavity ring-down spectrometer, with a measurement uncertainty of < 0.15 parts per thousand (delta O-18) and < 0.0 parts per thousand (delta H-2). The data give information about the vegetation period and the full seasonal isotope amplitude in the sampled lakes and about spatial isotope variability in different branches of the associated riverine systems. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-1857-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 4 SP - 1857 EP - 1867 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schellenberg, Johannes A1 - Reichert, Jessica A1 - Hardt, Martin A1 - Klingelhöfer, Ines A1 - Morlock, Gertrud A1 - Schubert, Patrick A1 - Bižić, Mina A1 - Grossart, Hans-Peter A1 - Kämpfer, Peter A1 - Wilke, Thomas A1 - Glaeser, Stefanie P. T1 - The bacterial microbiome of the long-term aquarium cultured high-microbial abundance sponge Haliclona cnidata BT - sustained bioactivity despite community shifts under detrimental conditions JF - Frontiers in Marine Science N2 - Marine sponges host highly diverse but specific bacterial communities that provide essential functions for the sponge holobiont, including antimicrobial defense. Here, we characterized the bacterial microbiome of the marine sponge Haliclona cnidata that has been in culture in an artificial marine aquarium system. We tested the hypotheses (1) that the long-term aquarium cultured sponge H. cnidata is tightly associated with a typical sponge bacterial microbiota and (2) that the symbiotic Bacteria sustain bioactivity under harmful environmental conditions to facilitate holobiont survival by preventing pathogen invasion. Microscopic and phylogenetic analyses of the bacterial microbiota revealed that H. cnidata represents a high microbial abundance (HMA) sponge with a temporally stable bacterial community that significantly shifts with changing aquarium conditions. A 4-week incubation experiment was performed in small closed aquarium systems with antibiotic and/or light exclusion treatments to reduce the total bacterial and photosynthetically active sponge-associated microbiota to a treatment-specific resilient community. While the holobiont was severely affected by the experimental treatment (i.e., bleaching of the sponge, reduced bacterial abundance, shifted bacterial community composition), the biological defense and bacterial community interactions (i.e., quorum sensing activity) remained intact. 16S rRNA gene amplicon sequencing revealed a resilient community of 105 bacterial taxa, which remained in the treated sponges. These 105 taxa accounted for a relative abundance of 72-83% of the bacterial sponge microbiota of non-treated sponge fragments that have been cultured under the same conditions. We conclude that a sponge-specific resilient community stays biologically active under harmful environmental conditions, facilitating the resilience of the holobiont. In H. cnidata, bacteria are located in bacteriocytes, which may have contributed to the observed phenomenon. KW - HMA sponge KW - bacterial symbionts KW - holobiont KW - antimicrobial defense KW - quorum sensing KW - bacteriocytes Y1 - 2020 U6 - https://doi.org/10.3389/fmars.2020.00266 SN - 2296-7745 VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Xiao, Shangbin A1 - Liu, Liu A1 - Wang, Wei A1 - Lorke, Andreas A1 - Woodhouse, Jason Nicholas A1 - Grossart, Hans-Peter T1 - A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water JF - Hydrology and earth system sciences : HESS N2 - Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6% and a measurement accuracy of 0.5% for CH4. A similar performance was observed for dissolved CO2 (t(95%) = 10 s, equilibration ratio 67.1 %). An equilibration ratio as high as 91.8% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases. Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-3871-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 7 SP - 3871 EP - 3880 PB - European Geosciences Union (EGU) ; Copernicus CY - Munich ER -