TY - JOUR A1 - Grotheer, Hendrik A1 - Meyer, Vera A1 - Riedel, Theran A1 - Pfalz, Gregor A1 - Mathieu, Lucie A1 - Hefter, Jens H. A1 - Gentz, Torben A1 - Lantuit, Hugues A1 - Mollennauer, Gesine A1 - Fritz, Michael T1 - Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea JF - Geophysical research letters N2 - Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration. Y1 - 2020 U6 - https://doi.org/10.1029/2019GL085897 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Radosavljevic, Boris A1 - Lantuit, Hugues A1 - Knoblauch, Christian A1 - Couture, Nicole A1 - Herzschuh, Ulrike A1 - Fritz, Michael T1 - Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada JF - Journal of marine science and engineering N2 - Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area. KW - permafrost KW - Arctic Ocean KW - stable carbon isotopes KW - nitrogen KW - sediment KW - chemistry KW - sediment dynamics KW - Beaufort Sea KW - grain size Y1 - 2022 U6 - https://doi.org/10.3390/jmse10111589 SN - 2077-1312 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tanski, George A1 - Lantuit, Hugues A1 - Ruttor, Saskia A1 - Knoblauch, Christian A1 - Radosavljevic, Boris A1 - Strauß, Jens A1 - Wolter, Juliane A1 - Irrgang, Anna Maria A1 - Ramage, Justine Lucille A1 - Fritz, Michael T1 - Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (delta C-13-TOC, delta C-13-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, delta C-13 signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty adds, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source. KW - Canadian Arctic KW - Coastal erosion KW - Retrogressive thaw slump KW - Biogeochemistry KW - Carbon degradation Y1 - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2016.12.152 SN - 0048-9697 SN - 1879-1026 VL - 581 SP - 434 EP - 447 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Couture, Nicole J. A1 - Irrgang, Anna Maria A1 - Pollard, Wayne A1 - Lantuit, Hugues A1 - Fritz, Michael T1 - Coastal erosion of permafrost soils along the yukon coastal plain and fluxes of organic carbon to the canadian beaufort sea JF - Journal of geophysical research : Biogeosciences N2 - Reducing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were reduced by 19% and sediment contents by 16%. The SOC content in a 1m(2) column of soil varied according to the height of the bluff, ranging from 30 to 662kg, with a mean value of 183kg. Forty-four per cent of the SOC was within the top 1m of soil and values varied based on surficial materials, ranging from 30 to 53kg C/m(3), with a mean of 41kg. Eighty per cent of the shoreline was erosive with a mean annual rate of change of -0.7m/yr. This resulted in a SOC flux per meter of shoreline of 132kg C/m/yr, and a total flux for the entire 282km of the Yukon coast of 35.5 x 10(6) kg C/yr (0.036 Tg C/yr). The mean flux of sediment per meter of shoreline was 5.3 x 10(3) kg/m/yr, with a total flux of 1,832 x 10(6)kg/yr (1.832 Tg/yr). Sedimentation rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where the overwhelming majority of organic carbon was of terrestrial origin. Plain Language Summary The oceans help slow the buildup of carbon dioxide (CO2) because they absorb much of this greenhouse gas. However, if carbon from other sources is added to the oceans, it can affect their ability to absorb atmospheric CO2. Our study examines the organic carbon added to the Canadian Beaufort Sea from eroding permafrost along the Yukon coast, a region quite vulnerable to erosion. Understanding carbon cycling in this area is important because environmental changes in the Arctic such as longer open water seasons, rising sea levels, and warmer air, water and soil temperatures are likely to increase coastal erosion and, thus, carbon fluxes to the sea. We measured the carbon in different types of permafrost soils and applied corrections to account for the volume taken up by various types of ground ice. By determining how quickly the shoreline is eroding, we assessed how much organic carbon is being transferred to the ocean each year. Our results show that 36 x 10(6) kg of carbon is added annually from this section of the coast. If we extrapolate these results to other coastal areas along the Canadian Beaufort Sea, the flux of organic carbon is nearly 3 times what was previously thought. KW - coastal erosion KW - organic carbon KW - ground ice KW - Yukon KW - Canadian Beaufort Sea Y1 - 2018 U6 - https://doi.org/10.1002/2017JG004166 SN - 2169-8953 SN - 2169-8961 VL - 123 IS - 2 SP - 406 EP - 422 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Fritz, Michael A1 - Unkel, Ingmar A1 - Lenz, Josefine A1 - Gajewski, Konrad A1 - Frenzel, Peter A1 - Paquette, Nathalie A1 - Lantuit, Hugues A1 - Körte, Lisa A1 - Wetterich, Sebastian T1 - Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments BT - a case study from Herschel Island, Yukon (Canada) JF - Journal of paleolimnolog N2 - Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future. KW - Arctic KW - Permafrost KW - Athalassic subsaline lake KW - XRF scanning KW - Pore-water hydrochemistry KW - Ostracoda Y1 - 2018 U6 - https://doi.org/10.1007/s10933-018-0025-0 SN - 0921-2728 SN - 1573-0417 VL - 60 IS - 1 SP - 77 EP - 96 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wolter, Juliane A1 - Lantuit, Hugues A1 - Wetterich, Sebastian A1 - Rethemeyer, Janet A1 - Fritz, Michael T1 - Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic JF - Permafrost and Periglacial Processes N2 - Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming. KW - carbon KW - lowland coasts KW - permafrost degradation KW - plant macrofossil analysis KW - tundra vegetation KW - western Canadian Arctic Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1977 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 164 EP - 181 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wetterich, Sebastian A1 - Schirrmeiste, Lutz A1 - Nazarova, Larisa B. A1 - Palagushkina, Olga A1 - Bobrov, Anatoly A1 - Pogosyan, Lilit A1 - Savelieva, Larisa A1 - Syrykh, Liudmila A1 - Matthes, Heidrun A1 - Fritz, Michael A1 - Günther, Frank A1 - Opel, Thomas A1 - Meyer, Hanno T1 - Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) JF - Permafrost and Periglacial Processes N2 - Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene. KW - bioindicators KW - cryolithology KW - hydrochemistry KW - Khalerchinskaya tundra KW - stable water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1979 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 182 EP - 198 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Coch, Caroline A1 - Lamoureux, Scott F. A1 - Knoblauch, Christian A1 - Eischeid, Isabell A1 - Fritz, Michael A1 - Obu, Jaroslav A1 - Lantuit, Hugues T1 - Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada) JF - Artic science N2 - Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes. KW - permafrost KW - hydrology KW - lateral fluxes KW - hysteresis KW - climate change Y1 - 2018 U6 - https://doi.org/10.1139/as-2018-0010 SN - 2368-7460 VL - 4 IS - 4 SP - 750 EP - 780 PB - Canadian science publishing CY - Ottawa ER - TY - JOUR A1 - Tanski, George A1 - Bergstedt, Helena A1 - Bevington, Alexandre A1 - Bonnaventure, Philip A1 - Bouchard, Frederic A1 - Coch, Caroline A1 - Dumais, Simon A1 - Evgrafova, Alevtina A1 - Frauenfeld, Oliver W. A1 - Frederick, Jennifer A1 - Fritz, Michael A1 - Frolov, Denis A1 - Harder, Silvie A1 - Hartmeyer, Ingo A1 - Heslop, Joanne A1 - Hoegstroem, Elin A1 - Johansson, Margareta A1 - Kraev, Gleb A1 - Kuznetsova, Elena A1 - Lenz, Josefine A1 - Lupachev, Alexey A1 - Magnin, Florence A1 - Martens, Jannik A1 - Maslakov, Alexey A1 - Morgenstern, Anne A1 - Nieuwendam, Alexandre A1 - Oliva, Marc A1 - Radosavljevi, Boris A1 - Ramage, Justine Lucille A1 - Schneider, Andrea A1 - Stanilovskaya, Julia A1 - Strauss, Jens A1 - Trochim, Erin A1 - Vecellio, Daniel J. A1 - Weber, Samuel A1 - Lantuit, Hugues T1 - The Permafrost Young Researchers Network (PYRN) is getting older BT - The past, present, and future of our evolving community JF - Polar record N2 - A lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY. KW - Early-career scientists KW - Education KW - IPY KW - International Polar Year KW - Outreach KW - Permafrost Young Researchers Network KW - PYRN KW - Science communication Y1 - 2019 U6 - https://doi.org/10.1017/S0032247418000645 SN - 0032-2474 SN - 1475-3057 VL - 55 IS - 4 SP - 216 EP - 219 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Tanski, Georg A1 - Wagner, Dirk A1 - Knoblauch, Christian A1 - Fritz, Michael A1 - Sachs, Torsten A1 - Lantuit, Hugues T1 - Rapid CO2 Release From Eroding Permafrost in Seawater JF - Geophysical research letters Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084303 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 20 SP - 11244 EP - 11252 PB - American Geophysical Union CY - Washington ER -