TY - GEN A1 - Kuschel, Luciano Bruno A1 - Sonnenburg, Dominik A1 - Engel, Tilman T1 - Factors of muscle quality and determinants of muscle strength BT - a systematic literature review T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak–moderate negative (range r: [−0.26]–[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak–moderate positive correlation (range r: 0.177–0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]–[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28–0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 838 KW - muscle quality KW - muscle strength KW - phase angle KW - echo intensity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589104 SN - 1866-8364 IS - 838 ER - TY - JOUR A1 - Kuschel, Luciano Bruno A1 - Sonnenburg, Dominik A1 - Engel, Tilman T1 - Factors of muscle quality and determinants of muscle strength BT - a systematic literature review JF - Healthcare N2 - Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak–moderate negative (range r: [−0.26]–[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak–moderate positive correlation (range r: 0.177–0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]–[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28–0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality. KW - muscle quality KW - muscle strength KW - phase angle KW - echo intensity Y1 - 2022 U6 - https://doi.org/10.3390/healthcare10101937 SN - 2227-9032 VL - 10 PB - MDPI CY - Basel ER - TY - GEN A1 - Wochatz, Monique A1 - Schraplau, Anne A1 - Engel, Tilman A1 - Zecher, Mahli Megan A1 - Sharon, Hadar A1 - Alt, Yasmin A1 - Mayer, Frank A1 - Kalron, Alon T1 - Application of eccentric training in various clinical populations BT - Protocol for a multi-centered pilot and feasibility study in people with low back pain and people with multiple sclerosis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 833 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588493 SN - 1866-8364 IS - 833 ER - TY - JOUR A1 - Wochatz, Monique A1 - Schraplau, Anne A1 - Engel, Tilman A1 - Zecher, Mahli Megan A1 - Sharon, Hadar A1 - Alt, Yasmin A1 - Mayer, Frank A1 - Kalron, Alon T1 - Application of eccentric training in various clinical populations BT - Protocol for a multi-centered pilot and feasibility study in people with low back pain and people with multiple sclerosis JF - PLoS ONE N2 - Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable. Y1 - 2022 U6 - https://doi.org/10.1371/journal.pone.0270875 SN - 1932-6203 VL - 17 IS - 12 PB - Public Library of Science CY - San Francisco, California, USA ER - TY - GEN A1 - Quarmby, Andrew A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 830 KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587603 SN - 1866-8364 IS - 830 ER - TY - JOUR A1 - Quarmby, Andrew A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review JF - Frontiers in Sports and Active Living N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2022.1012471 SN - 2624-9367 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass JF - BMC sports science, medicine and rehabilitation N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water KW - pipe KW - rotator cuff Y1 - 2020 U6 - https://doi.org/10.1186/s13102-020-00168-x SN - 2052-1847 VL - 12 IS - 1 PB - BioMed Central CY - London ER - TY - JOUR A1 - Rowley, K. Michael A1 - Engel, Tilman A1 - Kulig, Kornelia T1 - Trunk and hip muscle activity during the Balance-Dexterity task in persons with and without recurrent low back pain JF - Journal of electromyography and kinesiology N2 - Coordination of the trunk and hips is crucial for successful dynamic balance in many activities of daily living. Persons with recurrent low back pain (rLBP), both while symptomatic and during periods of symptom remission, exhibit dysfunctional muscle activation patterns and coordination of these joints. In a novel dynamic balance task where persons in remission from rLBP exhibit dissociated trunk motion, it is unknown how trunk and hip musculature are coordinated. Activation of hip and trunk muscles were acquired from nineteen persons with and without rLBP during the Balance-Dexterity Task, which involves balancing on one limb while compressing an unstable spring with the other. There were no between-group differences in activation amplitude for any muscle groups tested. In back-healthy control participants, hip and trunk muscle activation amplitudes increased proportionally in response to the added instability of the spring (R = 0.837, p < 0.001). Increases in muscle activation amplitudes in the group in remission from rLBP were not proportional (R = 0.113, p = 0.655). Instead, hip muscle activation in this group was associated with task performance, i.e. dexterous control of the spring (R = 0.676, p = 0.002). These findings highlight atypical coordination of hip and trunk musculature potentially related to task demands in persons with rLBP even during remission from pain. KW - balance KW - low back pain KW - trunk and hip coordination KW - lumbopelvic Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2019.102378 SN - 1050-6411 SN - 1873-5711 VL - 50 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Henschke, Jakob A1 - Zecher, Mahli Megan A1 - Mayer, Frank A1 - Engel, Tilman T1 - Contralateral repeated bout effect following preconditioning exercises BT - a systematic review JF - Sport sciences for health N2 - Background Recent studies indicate the existence of a repeated bout effect on the contralateral untrained limb following eccentric and isometric contractions. Aims This review aims to summarize the evidence for magnitude, duration and differences of this effect following isometric and eccentric preconditioning exercises. Methods Medline, Cochrane, and Web of science were searched from January 1971 until September 2020. Randomized controlled trials, case-control studies and cross-sectional studies were identified by combining keywords and synonyms (e.g., "contralateral", "exercise", "preconditioning", "protective effect"). At least two of the following outcome parameters were mandatory for study inclusion: strength, muscle soreness, muscle swelling, limb circumference, inflammatory blood markers or protective index (relative change of aforementioned measures). Results After identifying 1979 articles, 13 studies were included. Most investigations examined elbow flexors and utilized eccentric isokinetic protocols to induce the contralateral repeated bout effect. The magnitude of protection was observed in four studies, smaller values of the contralateral when compared to the ipsilateral repeated bout effect were noted in three studies. The potential mechanism is thought to be of neural central nature since no differences in peripheral muscle activity were observed. Time course was examined in three investigations. One study showed a smaller protective effect following isometric preconditioning when compared to eccentric preconditioning exercises. Conclusions The contralateral repeated bout effect demonstrates a smaller magnitude and lasts shorter than the ipsilateral repeated bout effect. Future research should incorporate long-term controlled trials including larger populations to identify central mechanisms. This knowledge should be used in clinical practice to prepare immobilized limbs prospectively for an incremental load. KW - musculoskeletal physiological phenomena KW - muscle damage KW - adaptation KW - Crossover KW - muscle soreness KW - isometric contraction Y1 - 2021 U6 - https://doi.org/10.1007/s11332-021-00804-0 SN - 1824-7490 SN - 1825-1234 VL - 18 IS - 1 SP - 1 EP - 10 PB - Soringer Italia CY - Milan ER - TY - JOUR A1 - Wochatz, Monique A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Alterations in scapular kinematics and scapular muscle activity after fatiguing shoulder flexion and extension movements JF - Medicine and science in sports and exercise : MSSE N2 - Repetitive overhead motions in combination with heavy loading were identified as risk factors for the development of shoulder pain. However, the underlying mechanism is not fully understood. Altered scapular kinematics as a result of muscle fatigue is suspected to be a contributor. PURPOSE: To determine scapular kinematics and scapular muscle activity at the beginning and end of constant shoulder flexion and extension loading in asymptomatic individuals. METHODS: Eleven asymptomatic adults (28±4yrs; 1.74±0.13m; 74±16kg) underwent maximum isokinetic loading of shoulder flexion (FLX) and extension (EXT) in the sagittal plane (ROM: 20- 180°; concentric mode; 180°/s) until individual peak torque was reduced by 50%. Simultaneously 3D scapular kinematics were assessed with a motion capture system and scapular muscle activity with a 3-lead sEMG of upper and lower trapezius (UT, LT) and serratus anterior (SA). Scapular position angles were calculated for every 20° increment between 20-120° humerothoracic positions. Muscle activity was quantified by amplitudes (RMS) of the total ROM. Descriptive analyses (mean±SD) of kinematics and muscle activity at begin (taskB) and end (taskE) of the loading task was followed by ANOVA and paired t-tests. RESULTS: At taskB activity ranged from 589±343mV to 605±250mV during FLX and from 105±41mV to 164±73mV during EXT across muscles. At taskE activity ranged from 594±304mV to 875±276mV during FLX and from 97±33mV to 147±57mV during EXT. Differences with increased muscle activity were seen for LT and UT during FLX (meandiff= 141±113mV for LT, p<0.01; 191±153mV for UT, p<0.01). Scapula position angles continuously increased in upward rotation, posterior tilt and external rotation during FLX and reversed during EXT both at taskB and taskE. At taskE scapula showed greater external rotation (meandiff= 3.6±3.7°, p<0.05) during FLX and decreased upward rotation (meandiff= 1.9±2.3°, p<0.05) and posterior tilt (meandiff= 1.0±2.1°, p<0.05) during EXT across humeral positions. CONCLUSIONS: Force reduction in consequence of fatiguing shoulder loading results in increased scapular muscle activity and minor alterations in scapula motion. Whether even small changes have a clinical impact by creating unfavorable subacromial conditions potentially initiating pain remains unclear. Y1 - 2020 U6 - https://doi.org/10.1249/01.mss.0000676540.02017.2c SN - 0195-9131 SN - 1530-0315 VL - 52 IS - 17 SP - 274 EP - 274 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -