TY - JOUR A1 - Siegmann, Rebekka A1 - Möller, Eleonore A1 - Beuermann, Sabine T1 - Propagation rate coefficients for homogeneous phase VDF-HFP copolymerization in supercritical CO2 JF - Macromolecular rapid communications N2 - For the first time, propagation rate coefficients, kp,COPO, for the copolymerizations of vinylidene fluoride and hexafluoropropene have been determined. The kinetic data was determined via pulsed-laser polymerization in conjunction with polymer analysis via size-exclusion chromatography, the PLP-SEC technique. The experiments were carried out in homogeneous phase with supercritical CO2 as solvent for temperatures ranging from 45 to 90 degrees C. Absolute polymer molecular weights were calculated on the basis of experimentally determined MarkHouwink constants. The Arrhenius parameters of kp,COPO vary significantly compared with ethene, which is explained by the high electronegativity of fluorine and less intra- and intermolecular interactions between the partially fluorinated macroradicals. KW - copolymerization KW - fluorinated olefins KW - kinetics (polym) KW - pulse laser initiated polymerization KW - radical polymerization Y1 - 2012 U6 - https://doi.org/10.1002/marc.201200115 SN - 1022-1336 VL - 33 IS - 14 SP - 1208 EP - 1213 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jelicic, Aleksandra A1 - Yasin, Muttaqin A1 - Beuermann, Sabine T1 - Toward the description and prediction of solvent induced variations in Methacrylate Propagation Rate Coefficients on the basis of Solvatochromic Parameters JF - Macromolecular reaction engineering N2 - Benzyl methacrylate (BzMA) propagation rate coefficients, k(p), were determined in ionic liquids and common organic solvents via pulsed-laser polymerizations with subsequent polymer analysis by size-exclusion chromatography (PLP-SEC). The aim of the work is to gain a deeper understanding of the solvent influence on k(p) and to develop a general correlation between solvent-induced variations in k(p) and solvent properties. Applying a linear solvation energy relationship (LSER), which correlates k(p) to solvent solvatochromic parameters, suggests that dipolarity/polarizability determines the solvent influence on k(p). To compare the solvent influence on BzMA k(p) with data for methyl methacrylate, hydroxypropyl methacrylate, and 2-ethoxyethyl methacrylate normalized k(p) data were treated by a single LSER, providing a universal treatment of the solvent influence on the propagation kinetics of the four monomers. Further, the predictive capabilities of this universal correlation were tested with additional monomers from the methacrylate family. KW - ionic liquid KW - kinetics (polym.) KW - radical polymerization KW - solvent influence Y1 - 2011 U6 - https://doi.org/10.1002/mren.201000058 SN - 1862-832X VL - 5 IS - 5-6 SP - 232 EP - 242 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Barth, Johannes A1 - Siegmann, Rebekka A1 - Beuermann, Sabine A1 - Russell, Gregory T. A1 - Buback, Michael T1 - Investigations into chain-length-dependent termination in bulk radical polymerization of 1H, 1H, 2H, 2H-Tridecafluorooctyl methacrylate JF - Macromolecular chemistry and physics N2 - The SP-PLP-EPR technique is used to carry out a detailed investigation of the radical termination kinetics of 1H, 1H, 2H, 2H-tridecafluorooctyl methacrylate (TDFOMA) in bulk at relatively low conversion. Composite-model behavior for chain-length-dependent termination rate coefficients, kti,i, is observed. It is found that for TDFOMA, ic approximate to 60 independent of temperature, and as approximate to 0.65 and al approximate to 0.2 at 80 degrees C and above. However, at lower temperatures the situation is strikingly different, with the significantly higher average values of as = 0.89 +/- 0.15 and al = 0.32 +/- 0.10 being obtained at 50 degrees C and below. This makes TDFOMA the first monomer to be found that exhibits clearly different exponent values, as and al, at lower and higher temperature, and that has both a high as, like an acrylate, and a high ic, like a methacrylate. KW - ESR KW - EPR KW - kinetics (polym KW - ) KW - methacrylates KW - radical polymerization KW - termination Y1 - 2012 U6 - https://doi.org/10.1002/macp.201100479 SN - 1022-1352 VL - 213 IS - 1 SP - 19 EP - 28 PB - Wiley-Blackwell CY - Malden ER -