TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Teixeira da Rocha, Joao B. A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans. KW - Methylmercury KW - Age KW - Development KW - C. elegans KW - Thioredoxin KW - Thioredoxin reductase Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.08.007 SN - 0161-813X SN - 1872-9711 VL - 68 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Antunes Soares, Felix A. A1 - Aschner, Michael T1 - Sex-Specific response of caenorhabditis elegans to Methylmercury Toxicity JF - Neurotoxicity Research N2 - Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observedmales exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans. KW - Methylmercury KW - Sex KW - Male KW - C KW - elegans KW - Antioxidant KW - Thioredoxin Y1 - 2019 U6 - https://doi.org/10.1007/s12640-018-9949-4 SN - 1029-8428 SN - 1476-3524 VL - 35 IS - 1 SP - 208 EP - 216 PB - Springer CY - New York ER - TY - JOUR A1 - Rohn, Isabelle A1 - Raschke, Stefanie A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake. KW - antioxidant defense systems KW - caenorhabditis elegans KW - selenium KW - oxidative stress KW - selenoproteins Y1 - 2019 U6 - https://doi.org/10.1002/mnfr.201801304 SN - 1613-4125 SN - 1613-4133 VL - 63 IS - 9 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rohn, Isabelle A1 - Marschall, Talke Anu A1 - Kröpfl, Nina A1 - Jensen, Kenneth Bendix A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans JF - Metallomics : integrated biometal science N2 - The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode. Y1 - 2018 U6 - https://doi.org/10.1039/c8mt00066b SN - 1756-5901 SN - 1756-591X VL - 10 IS - 6 SP - 818 EP - 827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rohn, Isabelle A1 - Kroepfl, Nina A1 - Aschner, Michael A1 - Bornhorst, Julia A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja T1 - Selenoneine ameliorates peroxide-induced oxidative stress in C. elegans JF - Journal of trace elements in medicine and biology N2 - Scope: Selenoneine (2-selenyl-N-alpha, N-alpha, N-alpha-trimethyl-L-histidine), the selenium (Se) analogue of the ubiquitous thiol compound and putative antioxidant ergothioneine, is the major organic selenium species in several marine fish species. Although its antioxidant efficacy has been proposed, selenoneine has been poorly characterized, preventing conclusions on its possible beneficial health effects. Methods and results: Treatment of Caenorhabditis elegans (C. elegans) with selenoneine for 18 h attenuated the induction of reactive oxygen and nitrogen species (RONS). However, the effect was not immediate, occurring 48 h post-treatment. Total Se and Se speciation analysis revealed that selenoneine was efficiently taken up and present in its original form directly after treatment, with no metabolic transformations observed. 48 h posttreatment, total Se in worms was slightly higher compared to controls and no selenoneine could be detected. Conclusion: The protective effect of selenoneine may not be attributed to the presence of the compound itself, but rather to the activation of molecular mechanisms with consequences at more protracted time points. KW - Selenoneine KW - Caenorhabditis elegans KW - Selenium KW - Oxidative stress Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.012 SN - 0946-672X VL - 55 SP - 78 EP - 81 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Peres, Tanara Vieira A1 - Arantes, Leticia P. A1 - Miah, Mahfuzur R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Leal, Rodrigo B. A1 - Aschner, Michael T1 - Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity JF - Neurotoxicity Research N2 - Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson’s disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration. KW - Manganese . C. elegans KW - Signaling pathways KW - DAF-16 KW - Akt/PKB KW - SGK-1 Y1 - 2018 U6 - https://doi.org/10.1007/s12640-018-9915-1 SN - 1029-8428 SN - 1476-3524 VL - 34 IS - 3 SP - 584 EP - 596 PB - Springer CY - New York ER - TY - JOUR A1 - Peres, Tanara V. A1 - Horning, Kyle J. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Aschner, Michael T1 - Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo JF - Biological Trace Element Research N2 - Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity. KW - Small molecules KW - Manganese KW - Neurotoxicity KW - C. elegans KW - Dopamine Y1 - 2018 U6 - https://doi.org/10.1007/s12011-018-1531-7 SN - 0163-4984 SN - 1559-0720 VL - 188 IS - 1 SP - 127 EP - 134 PB - Human press inc. CY - Totowa ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans JF - International Journal of Molecular Sciences N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - https://doi.org/10.3390/ijms222010905 SN - 1422-0067 VL - 22 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Baesler, Jessica A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Consequences of manganese overload in C. elegans BT - oxidative stress and DNA damage JF - Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie Y1 - 2020 U6 - https://doi.org/10.1007/s00210-020-01828-y SN - 0028-1298 SN - 1432-1912 VL - 393 IS - SUPPL 1 SP - 9 EP - 9 PB - Springer CY - New York ER - TY - JOUR A1 - Gubert, Priscila A1 - Puntel, Bruna A1 - Lehmen, Tassia A1 - Fessel, Joshua P. A1 - Cheng, Pan A1 - Bornhorst, Julia A1 - Trindade, Lucas Siqueira A1 - Avila, Daiana S. A1 - Aschner, Michael A1 - Soares, Felix A. A. T1 - Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn’s effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins. KW - Manganese KW - Caenorhabditis elegans KW - Lipid metabolism KW - Dopaminergic system KW - Manganism Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.04.008 SN - 0161-813X SN - 1872-9711 VL - 67 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER -