TY - JOUR A1 - Kumar, Mohit A1 - Rosenblum, Michael T1 - Two mechanisms of remote synchronization in a chain of Stuart-Landau oscillators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Remote synchronization implies that oscillators interacting not directly but via an additional unit (hub) adjust their frequencies and exhibit frequency locking while the hub remains asynchronous. In this paper, we analyze the mechanisms of remote synchrony in a small network of three coupled Stuart-Landau oscillators using recent results on higher-order phase reduction. We analytically demonstrate the role of two factors promoting remote synchrony. These factors are the nonisochronicity of oscillators and the coupling terms appearing in the secondorder phase approximation. We show a good correspondence between our theory and numerical results for small and moderate coupling strengths. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.054202 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mau, Erik Thomas Klaus A1 - Rosenblum, Michael T1 - Optimizing charge-balanced pulse stimulation for desynchronization JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Collective synchronization in a large population of self-sustained units appears both in natural and engineered systems. Sometimes this effect is in demand, while in some cases, it is undesirable, which calls for control techniques. In this paper, we focus on pulsatile control, with the goal to either increase or decrease the level of synchrony. We quantify this level by the entropy of the phase distribution. Motivated by possible applications in neuroscience, we consider pulses of a realistic shape. Exploiting the noisy Kuramoto-Winfree model, we search for the optimal pulse profile and the optimal stimulation phase. For this purpose, we derive an expression for the change of the phase distribution entropy due to the stimulus. We relate this change to the properties of individual units characterized by generally different natural frequencies and phase response curves and the population's state. We verify the general result by analyzing a two-frequency population model and demonstrating a good agreement of the theory and numerical simulations. Y1 - 2022 U6 - https://doi.org/10.1063/5.0070036 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - AIP CY - Melville ER - TY - JOUR A1 - Krylov, Dmitrii A1 - Dylov, Dmitry V. A1 - Rosenblum, Michael T1 - Reinforcement learning for suppression of collective activity in oscillatory ensembles JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We present the use of modern machine learning approaches to suppress self-sustained collective oscillations typically signaled by ensembles of degenerative neurons in the brain. The proposed hybrid model relies on two major components: an environment of oscillators and a policy-based reinforcement learning block. We report a model-agnostic synchrony control based on proximal policy optimization and two artificial neural networks in an Actor-Critic configuration. A class of physically meaningful reward functions enabling the suppression of collective oscillatory mode is proposed. The synchrony suppression is demonstrated for two models of neuronal populations-for the ensembles of globally coupled limit-cycle Bonhoeffer-van der Pol oscillators and for the bursting Hindmarsh-Rose neurons using rectangular and charge-balanced stimuli. Y1 - 2020 U6 - https://doi.org/10.1063/1.5128909 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 3 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenblum, Michael T1 - Controlling collective synchrony in oscillatory ensembles by precisely timed pulses JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We present an efficient technique for control of synchrony in a globally coupled ensemble by pulsatile action. We assume that we can observe the collective oscillation and can stimulate all elements of the ensemble simultaneously. We pay special attention to the minimization of intervention into the system. The key idea is to stimulate only at the most sensitive phase. To find this phase, we implement an adaptive feedback control. Estimating the instantaneous phase of the collective mode on the fly, we achieve efficient suppression using a few pulses per oscillatory cycle. We discuss the possible relevance of the results for neuroscience, namely, for the development of advanced algorithms for deep brain stimulation, a medical technique used to treat Parkinson's disease. Y1 - 2020 U6 - https://doi.org/10.1063/5.0019823 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Popovych, Oleksandr V. A1 - Lysyansky, Borys A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Tass, Peter A. T1 - Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation JF - PLoS one N2 - High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0173363 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kühn, Andrea A. A1 - Busch, Johannes Leon T1 - Real-time estimation of phase and amplitude with application to neural data JF - Scientific reports N2 - Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal’s past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient’s beta-band brain activity. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-97560-5 SN - 2045-2322 VL - 11 PB - Springer Nature CY - London ER - TY - JOUR A1 - Topçu, Çağdaş A1 - Frühwirth, Matthias A1 - Moser, Maximilian A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Disentangling respiratory sinus arrhythmia in heart rate variability records JF - Physiological Measurement N2 - Objective: Several different measures of heart rate variability, and particularly of respiratory sinus arrhythmia, are widely used in research and clinical applications. For many purposes it is important to know which features of heart rate variability are directly related to respiration and which are caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a nonlinear disentanglement of the heart rate variability into the respiratory-related component and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets from healthy subjects. In all cases we show how the disentanglement is manifested in the different measures of heart rate variability. Significance: The suggested technique can be exploited as a universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in cases when effects of other factors on the heart rate variability are in focus. KW - respiratory sinus arrhythmia KW - heart rate variability KW - coupled oscillators model KW - phase dynamics KW - data analysis Y1 - 2018 U6 - https://doi.org/10.1088/1361-6579/aabea4 SN - 0967-3334 SN - 1361-6579 VL - 39 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Inferring the phase response curve from observation of a continuously perturbed oscillator JF - Scientific reports N2 - Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32069-y SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Efficient determination of synchronization domains from observations of asynchronous dynamics JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We develop an approach for a fast experimental inference of synchronization properties of an oscillator. While the standard technique for determination of synchronization domains implies that the oscillator under study is forced with many different frequencies and amplitudes, our approach requires only several observations of a driven system. Reconstructing the phase dynamics from data, we successfully determine synchronization domains of noisy and chaotic oscillators. Our technique is especially important for experiments with living systems where an external action can be harmful and shall be minimized. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5037012 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Numerical phase reduction beyond the first order approximation JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5079617 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 1 PB - American Institute of Physics CY - Melville ER -