TY - JOUR A1 - Greene, Chad A. A1 - Thirumalai, Kaustubh A1 - Kearney, Kelly A. A1 - Delgado, Jose Miguel Martins A1 - Schwanghart, Wolfgang A1 - Wolfenbarger, Natalie S. A1 - Thyng, Kristen M. A1 - Gwyther, David E. A1 - Gardner, Alex S. A1 - Blankenship, Donald D. T1 - The Climate Data Toolbox for MATLAB JF - Geochemistry, geophysics, geosystems N2 - Climate science is highly interdisciplinary by nature, so understanding interactions between Earth processes inherently warrants the use of analytical software that can operate across the disciplines of Earth science. Toward this end, we present the Climate Data Toolbox for MATLAB, which contains more than 100 functions that span the major climate-related disciplines of Earth science. The toolbox enables streamlined, entirely scriptable workflows that are intuitive to write and easy to share. Included are functions to evaluate uncertainty, perform matrix operations, calculate climate indices, and generate common data displays. Documentation is presented pedagogically, with thorough explanations of how each function works and tutorials showing how the toolbox can be used to replicate results of published studies. As a well-tested, well-documented platform for interdisciplinary collaborations, the Climate Data Toolbox for MATLAB aims to reduce time spent writing low-level code, let researchers focus on physics rather than coding and encourage more efficacious code sharing. Plain Language Summary This article describes a collection of computer code that has recently been released to help scientists analyze many types of Earth science data. The code in this toolbox makes it easy to investigate things like global warming, El Nino, or other major climate-related processes such as how winds affect ocean circulation. Although the toolbox was designed to be used by expert climate scientists, its instruction manual is well written, and beginners may be able to learn a great deal about coding and Earth science, simply by following along with the provided examples. The toolbox is intended to help scientists save time, help them ensure their analysis is accurate, and make it easy for other scientists to repeat the results of previous studies. Y1 - 2019 U6 - https://doi.org/10.1029/2019GC008392 SN - 1525-2027 VL - 20 IS - 7 SP - 3774 EP - 3781 PB - American Geophysical Union CY - Washington ER -