TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Denker, Carsten T1 - Dynamics and connectivity of an extended arch filament system JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. In this study, we analyzed a filament system, which expanded between moving magnetic features (MMFs) of a decaying sunspot and opposite flux outside of the active region from the nearby quiet-Sun network. This configuration deviated from a classical arch filament system (AFS), which typically connects two pores in an emerging flux region. Thus, we called this system an extended AFS. We contrasted classical and extended AFSs with an emphasis on the complex magnetic structure of the latter. Furthermore, we examined the physical properties of the extended AFS and described its dynamics and connectivity. Methods. The extended AFS was observed with two instruments at the Dunn Solar Telescope (DST). The Rapid Oscillations in the Solar Atmosphere (ROSA) imager provided images in three different wavelength regions, which covered the dynamics of the extended AFS at different atmospheric heights. The Interferometric Bidimensional Spectropolarimeter (IBIS) provided spectroscopic Ha data and spectropolarimetric data that was obtained in the near-infrared (NIR) Call lambda 8542 angstrom line. We derived the corresponding line-of-sight (LOS) velocities and used He II lambda 304 angstrom extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (AIA) and LOS magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) as context data. Results. The NIR Call Stokes-V maps are not suitable to definitively define a clear polarity inversion line and to classify this chromospheric structure. Nevertheless, this unusual AFS connects the MMFs of a decaying sunspot with the network field. At the southern footpoint, we measured that the flux decreases over time. We find strong downflow velocities at the footpoints of the extended AFS, which increase in a time period of 30 min. The velocities are asymmetric at both footpoints with higher velocities at the southern footpoint. An EUV brigthening appears in one of the arch filaments, which migrates from the northern footpoint toward the southern one. This activation likely influences the increasing redshift at the southern footpoint. Conclusions. The extended AFS exhibits a similar morphology as classical AFSs, for example, threaded filaments of comparable length and width. Major differences concern the connection from MMFs around the sunspot with the flux of the neighboring quietSun network, converging footpoint motions, and longer lifetimes of individual arch filaments of about one hour, while the extended AFS is still very dynamic. KW - methods: observational KW - Sun: filaments, prominences KW - Sun: activity KW - techniques: image processing KW - Sun: chromosphere Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935583 SN - 1432-0746 VL - 629 PB - EDP Sciences CY - Les Ulis ER -