TY - JOUR A1 - Schwarze, Martin A1 - Schellhammer, Karl Sebastian A1 - Ortstein, Katrin A1 - Benduhn, Johannes A1 - Gaul, Christopher A1 - Hinderhofer, Alexander A1 - Toro, Lorena Perdigon A1 - Scholz, Reinhard A1 - Kublitski, Jonas A1 - Roland, Steffen A1 - Lau, Matthias A1 - Poelking, Carl A1 - Andrienko, Denis A1 - Cuniberti, Gianaurelio A1 - Schreiber, Frank A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Ortmann, Frank A1 - Leo, Karl T1 - Impact of molecular quadrupole moments on the energy levels at organic heterojunctions JF - Nature Communications N2 - The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the p-p-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10435-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Nikolis, Vasileios C. A1 - Mischok, Andreas A1 - Siegmund, Bernhard A1 - Kublitski, Jonas A1 - Jia, Xiangkun A1 - Benduhn, Johannes A1 - Hörmann, Ulrich A1 - Neher, Dieter A1 - Gather, Malte C. A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Strong light-matter coupling for reduced photon energy losses in organic photovoltaics JF - Nature Communications N2 - Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-11717-5 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -