TY - JOUR A1 - Yarman, Aysu A1 - Kurbanoğlu, Sevinç A1 - Zebger, Ingo A1 - Scheller, Frieder W. T1 - Simple and robust BT - the claims of protein sensing by molecularly imprinted polymers JF - Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers N2 - A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 % of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering. KW - Molecularly imprinted polymer KW - Plastibodies KW - Functional scaffolds KW - Biomimetic sensors KW - Proteins Y1 - 2021 U6 - https://doi.org/10.1016/j.snb.2020.129369 SN - 0925-4005 SN - 1873-3077 VL - 330 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Tuncaboylu, Deniz Ceylan A1 - Friess, Fabian A1 - Wischke, Christian A1 - Lendlein, Andreas T1 - A multifunctional multimaterial system for on-demand protein release JF - Journal of controlled release N2 - In order to provide best control of the regeneration process for each individual patient, the release of protein drugs administered during surgery may need to be timely adapted and/or delayed according to the progress of healing/regeneration. This study aims to establish a multifunctional implant system for a local on-demand release, which is applicable for various types of proteins. It was hypothesized that a tubular multimaterial container kit, which hosts the protein of interest as a solution or gel formulation, would enable on-demand release if equipped with the capacity of diameter reduction upon external stimulation. Using devices from poly(epsilon-caprolactone) networks, it could be demonstrated that a shape-memory effect activated by heat or NIR light enabled on-demand tube shrinkage. The decrease of diameter of these shape-memory tubes (SMT) allowed expelling the payload as demonstrated for several proteins including SDF-1 alpha, a therapeutically relevant chemotactic protein, to achieve e.g. continuous release with a triggered add-on dosing (open tube) or an on-demand onset of bolus or sustained release (sealed tube). Considering the clinical relevance of protein factors in (stem) cell attraction to lesions and the progress in monitoring biomarkers in body fluids, such on-demand release systems may be further explored e.g. in heart, nerve, or bone regeneration in the future. KW - Shape-memory polymer KW - On-demand release KW - Proteins KW - Poly(epsilon-caprolactone) networks KW - Near infrared light triggered shape-recovery Y1 - 2018 U6 - https://doi.org/10.1016/j.jconrel.2018.06.022 SN - 0168-3659 SN - 1873-4995 VL - 284 SP - 240 EP - 247 PB - Elsevier CY - Amsterdam ER -