TY - JOUR A1 - Tschorn, Mira A1 - Schulze, Susanne A1 - Förstner, Bernd R. A1 - Holmberg, Christine A1 - Spallek, Jacob A1 - Heinz, Andreas A1 - Rapp, Michael A. T1 - Predictors and prevalence of hazardous alcohol use in middle-late to late adulthood in Europe JF - Aging & mental health N2 - Objectives: Even low to moderate levels of alcohol consumption can have detrimental health consequences, especially in older adults (OA). Although many studies report an increase in the proportion of drinkers among OA, there are regional variations. Therefore, we examined alcohol consumption and the prevalence of hazardous alcohol use (HAU) among men and women aged 50+ years in four European regions and investigated predictors of HAU. Methods: We analyzed data of N = 35,042 participants of the European SHARE study. We investigated differences in alcohol consumption (units last week) according to gender, age and EU-region using ANOVAs. Furthermore, logistic regression models were used to examine the effect of income, education, marital status, history of a low-quality parent-child relationship and smoking on HAU, also stratified for gender and EU-region. HAU was operationalized as binge drinking or risky drinking (<12.5 units of 10 ml alcohol/week). Results: Overall, past week alcohol consumption was 5.0 units (+/- 7.8), prevalence of HAU was 25.4% within our sample of European adults aged 50+ years. Male gender, younger age and living in Western Europe were linked to both higher alcohol consumption and higher risks of HAU. Income, education, smoking, a low-quality parent-child relationship, living in Northern and especially Eastern Europe were positively associated with HAU. Stratified analyses revealed differences by region and gender. Conclusions: HAU was highly prevalent within this European sample of OA. Alcohol consumption and determinants of HAU differed between EU-regions, hinting to a necessity of risk-stratified population-level strategies to prevent HAU and subsequent alcohol use disorders. KW - Hazardous alcohol use KW - older adults KW - middle-aged adults KW - Europe KW - alcohol KW - drug and alcohol abuse KW - cross-national KW - international studies KW - environmental factors KW - housing KW - rural-urban factors KW - epidemiology (mental health) Y1 - 2022 U6 - https://doi.org/10.1080/13607863.2022.2076208 SN - 1360-7863 SN - 1364-6915 VL - 27 IS - 5 SP - 1001 EP - 1010 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Schneidemesser, Erika von A1 - Sibiya, Bheki A1 - Caseiro, Alexandre A1 - Butler, Tim A1 - Lawrence, Mark A1 - Leitao, Joana A1 - Lupaşcu, Aura A1 - Salvador, Pedro T1 - Learning from the COVID-19 lockdown in Berlin BT - Observations and modelling to support understanding policies to reduce NO2 JF - Atmospheric environment: X N2 - Urban air pollution is a substantial threat to human health. Traffic emissions remain a large contributor to air pollution in urban areas. The mobility restrictions put in place in response to the COVID-19 pandemic provided a large-scale real-world experiment that allows for the evaluation of changes in traffic emissions and the corresponding changes in air quality. Here we use observational data, as well as modelling, to analyse changes in nitrogen dioxide, ozone, and particulate matter resulting from the COVID-19 restrictions at the height of the lockdown period in Spring of 2020. Accounting for the influence of meteorology on air quality, we found that reduction of ca. 30-50 % in traffic counts, dominated by changes in passenger cars, corresponded to reductions in median observed nitrogen dioxide concentrations of ca. 40 % (traffic and urban background locations) and a ca. 22 % increase in ozone (urban background locations) during weekdays. Lesser reductions in nitrogen dioxide concentrations were observed at urban background stations at weekends, and no change in ozone was observed. The modelled reductions in median nitrogen dioxide at urban background locations were smaller than the observed reductions and the change was not significant. The model results showed no significant change in ozone on weekdays or weekends. The lack of a simulated weekday/weekend effect is consistent with previous work suggesting that NOx emissions from traffic could be significantly underestimated in European cities by models. These results indicate the potential for improvements in air quality due to policies for reducing traffic, along with the scale of reductions that would be needed to result in meaningful changes in air quality if a transition to sustainable mobility is to be seriously considered. They also confirm once more the highly relevant role of traffic for air quality in urban areas. KW - Urban areas KW - Air pollution KW - Emissions KW - COVID-19 KW - Nitrogen dioxide KW - Ozone KW - Europe Y1 - 2021 U6 - https://doi.org/10.1016/j.aeaoa.2021.100122 SN - 2590-1621 VL - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kuhlicke, Christian A1 - Masson, Torsten A1 - Kienzler, Sarah A1 - Sieg, Tobias A1 - Thieken, Annegret A1 - Kreibich, Heidi T1 - Multiple flood experiences and social resilience BT - Findings from three surveys on households and companies exposed to the 2013 flood in Germany JF - Weather, Climate, and Society N2 - Previous studies have explored the consequences of flood events for exposed households and companies by focusing on single flood events. Less is known about the consequences of experiencing repeated flood events for the resilience of households and companies. In this paper, we therefore explore how multiple floods experience affects the resilience of exposed households and companies. Resilience was made operational through individual appraisals of households and companies' ability to withstand and recover from material as well as health and psychological impacts of the 2013 flood in Germany. The paper is based on three different datasets including more than 2000 households and 300 companies that were affected by the 2013 flood. The surveys revealed that the resilience of households seems to increase, but only with regard to their subjectively appraised ability to withstand impacts on mobile goods and equipment (e.g., cars, TV, and radios). In regard to the ability of households to withstand overall financial consequences of repetitive floods, evidence for nonlinear (quadratic) trends can be found. With regard to psychological and health-related consequences, the findings are mixed but provide tentative evidence for eroding resilience among households. Companies' resilience increased with respect to material assets but appears to decrease with respect to ability to recover. We conclude by arguing that clear and operational definitions of resilience are required so that evidence-based resilience baselines can be established to assess whether resilience is eroding or improving over time. KW - social science KW - Europe Y1 - 2020 U6 - https://doi.org/10.1175/WCAS-D-18-0069.1 SN - 1948-8327 SN - 1948-8335 VL - 12 IS - 1 SP - 63 EP - 88 PB - American Meteorological Society CY - Boston ER - TY - JOUR A1 - Barbot, Sylvain A1 - Weiss, Jonathan R. T1 - Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia JF - Geophysical journal international N2 - The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, translithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north-south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa-Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8mm yr(-1) in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy-Pliny-Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation. KW - Seismic cycle KW - Space geodetic surveys KW - Europe KW - Joint inversion KW - Kinematics of crustal and mantle deformation KW - Rheology: crust and KW - lithosphere Y1 - 2021 U6 - https://doi.org/10.1093/gji/ggab078 SN - 0956-540X SN - 1365-246X VL - 226 IS - 1 SP - 422 EP - 445 PB - Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Ganguli, Poulomi A1 - Paprotny, Dominik A1 - Hasan, Mehedi A1 - Güntner, Andreas A1 - Merz, Bruno T1 - Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe JF - Earth's future N2 - Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods. KW - compound flood KW - storm surge KW - river floods KW - sea level rise KW - climate KW - change KW - Europe Y1 - 2020 U6 - https://doi.org/10.1029/2020EF001752 SN - 2328-4277 VL - 8 IS - 11 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - JOUR A1 - Weatherill, Graeme A1 - Cotton, Fabrice T1 - A ground motion logic tree for seismic hazard analysis in the stable cratonic region of Europe BT - regionalisation, model selection and development of a scaled backbone approach JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - Regions of low seismicity present a particular challenge for probabilistic seismic hazard analysis when identifying suitable ground motion models (GMMs) and quantifying their epistemic uncertainty. The 2020 European Seismic Hazard Model adopts a scaled backbone approach to characterise this uncertainty for shallow seismicity in Europe, incorporating region-to-region source and attenuation variability based on European strong motion data. This approach, however, may not be suited to stable cratonic region of northeastern Europe (encompassing Finland, Sweden and the Baltic countries), where exploration of various global geophysical datasets reveals that its crustal properties are distinctly different from the rest of Europe, and are instead more closely represented by those of the Central and Eastern United States. Building upon the suite of models developed by the recent NGA East project, we construct a new scaled backbone ground motion model and calibrate its corresponding epistemic uncertainties. The resulting logic tree is shown to provide comparable hazard outcomes to the epistemic uncertainty modelling strategy adopted for the Eastern United States, despite the different approaches taken. Comparison with previous GMM selections for northeastern Europe, however, highlights key differences in short period accelerations resulting from new assumptions regarding the characteristics of the reference rock and its influence on site amplification. KW - ground motion models KW - stable craton KW - regionalisation KW - epistemic KW - uncertainty KW - Europe Y1 - 2020 U6 - https://doi.org/10.1007/s10518-020-00940-x SN - 1570-761X SN - 1573-1456 VL - 18 IS - 14 SP - 6119 EP - 6148 PB - Springer Science + Business Media B.V. CY - Dordrecht ER - TY - JOUR A1 - Spooner, Cameron A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Götze, Hans-Jürgen A1 - Luijendijk, Elco T1 - The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity JF - Global and planetary change N2 - Temperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that at depths of < 10 km the thermal field is largely controlled by sedimentary blanketing or topographic effects, whilst the deeper temperature field is primarily controlled by the LAB topology and the distribution and parameterization of radiogenic heat sources within the upper crust. KW - steady-state KW - thermal-field KW - Europe KW - Alps KW - Adria KW - seismicity Y1 - 2020 U6 - https://doi.org/10.1016/j.gloplacha.2020.103288 SN - 0921-8181 SN - 1872-6364 VL - 193 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reil, Daniela A1 - Imholt, Christian A1 - Rosenfeld, Ulrike M. A1 - Drewes, Stephan A1 - Fischer, S. A1 - Heuser, Emil A1 - Petraityte-Burneikiene, Rasa A1 - Ulrich, R. G. A1 - Jacob, J. T1 - Validation of the Puumala virus rapid field test for bank voles in Germany JF - Epidemiology and infection N2 - Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Wurttemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk. KW - Antibody detection KW - early warning KW - Europe KW - hantavirus KW - Myodes glareolus Y1 - 2017 U6 - https://doi.org/10.1017/S0950268816002557 SN - 0950-2688 SN - 1469-4409 VL - 145 IS - 3 SP - 434 EP - 439 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Feld, Christian A1 - Mechie, James A1 - Hübscher, Christian A1 - Hall, Jeremy A1 - Nicolaides, Stelios A1 - Gurbuz, Cemil A1 - Bauer, Klaus A1 - Louden, Keith A1 - Weber, Michael T1 - Crustal structure of the eratosthenes seamount, cyprus and S. Turkey from an amphibian wide-angle seismic profile JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - In 2010, project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Anatolian plateau across southern Turkey and Cyprus to just south of the Eratosthenes Seamount (ESM). The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of Africa with Anatolia. Arrival picking, finite-differences ray-tracing and inversion of the offshore and on-offshore data produced a tomographic model across southern Cyprus, the accretionary wedge and the ESM. The main features of this model are (1) crustal P-velocities predominantly lower than 6.5 km/s beneath the ESM, (2) crustal thickness between 28 and 37 km, (3) an upper crustal reflection at 5 km depth beneath the ESM, (4) the likely presence of oceanic crust south of the ESM and a transform margin north of it and (5) a 12 km thick ophiolite sequence on Cyprus. Land shots on Turkey, also recorded on Cyprus, gravity data and geological and previous seismic investigations allow to derive a layered velocity model beneath Anatolia and the northern part of Cyprus. The main features of this model are (1) Moho depths of 38–45 km beneath the Anatolian plateau, (2) an upper and lower crust with large lateral changes in velocity and thickness, (3) a north-dipping subducting plate below Cyprus with a steepening of the dip-angle of the plate at about 45 km depth. Thus, the wide-angle seismic and gravity data provide detailed insights into the 2-D geometry and velocity structures associated with the Cyprus Arc collision zone. Finally, integrated analysis of the geophysics and geology allows a comprehensive interpretation of the crustal structure related to the collision process. KW - Controlled source seismology KW - Subduction zone processes KW - Continental margins: convergent KW - Crustal structure KW - Europe KW - Gravity anomalies and Earth structure Y1 - 2017 U6 - https://doi.org/10.1016/j.tecto.2017.02.003 SN - 0040-1951 SN - 1879-3266 VL - 700 SP - 32 EP - 59 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Simms, Melanie A1 - Eversberg, Dennis A1 - Dupuy, Camille A1 - Hipp, Lena T1 - Organizing young workers under precarious conditions BT - what hinders or facilitates union success JF - Work and occupations N2 - Under what conditions do young precarious workers join unions? Based on case studies from France, Germany, the United Kingdom, and the United States, the authors identify targeted campaigns, coalition building, membership activism, and training activities as innovative organizing approaches. In addition to traditional issues such as wages and training quality, these approaches also featured issues specific to precarious workers, including skills training, demands for minimum working hours, and specific support in insecure employment situations. Organizing success is influenced by bargaining structures, occupational identity, labor market conditions, and support by union leaders and members. Innovative organizing tends to happen when unions combine new approaches with existing structures. KW - unions KW - organizing strategies KW - precarious work KW - young workers KW - qualitative case studies KW - Europe KW - United States Y1 - 2018 U6 - https://doi.org/10.1177/0730888418785947 SN - 0730-8884 SN - 1552-8464 VL - 45 IS - 4 SP - 420 EP - 450 PB - Sage Publ. CY - Thousand Oaks ER -