TY - JOUR A1 - Taran, Michail N. A1 - Nunez Valdez, Maribel A1 - Efthimiopoulos, Ilias A1 - Müller, J. A1 - Reichmann, Hans-Josef A1 - Wilke, Max A1 - Koch-Müller, Monika T1 - Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite-lithiophilite JF - Physics and Chemistry of Minerals N2 - Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76-80GPa in a natural triphylite-lithiophilite sample with chemical composition (LiFe0.7082+Mn0.292PO4)-Li-M1-Fe-M2 (theoretical composition (LiFe0.52+Mn0.5PO4)-Li-M1-Fe-M2). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents (1) (similar to 9330cm(-1)) and (2) (similar to 7110cm(-1)), resulting from the electronic spin-allowed transition (T2gEg)-T-5-E-5 of octahedral (HSFe2+)-Fe-M2. Both (1) and (2) bands shift non-linearly with pressure to higher energies up to similar to 55GPa. In the optical absorption spectrum measured at similar to 81GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360cm(-1) appears, superimposed on the tail of the high-energy ligand-to-metal O2-Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition (1)A(1g)(1)T(1g) of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P-O symmetric stretching modes to lower frequencies at similar to 76GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of Mn-M2(2+) simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite Fe-M2(2+) end-member, in qualitative agreement with our experimental observations. KW - Phosphates KW - Triphylite KW - Raman KW - Infrared KW - Optical absorption spectroscopy KW - High pressure KW - Spin transition KW - DFT Y1 - 2019 U6 - https://doi.org/10.1007/s00269-018-1001-y SN - 0342-1791 SN - 1432-2021 VL - 46 IS - 3 SP - 245 EP - 258 PB - Springer CY - New York ER - TY - JOUR A1 - Antoniou, Stella A1 - Pashalidis, I. A1 - Gessner, Andre A1 - Kumke, Michael Uwe T1 - The effect of humic acid on the formation and solubility of secondary solid phases (Nd(OH)CO3 and Sm(OH)CO3) JF - Radiochimica acta : international journal for chemical aspects of nuclear science and technology N2 - The formation of secondary Ln(III) solid phases (e.g. Nd(OH)CO3 and Sm(OH)CO3) has been studied as a function of the humic acid (HA) concentration in 0.1 M NaClO4 aqueous solution and their solubility has been investigated in the neutral pH range (6.5-8) under normal atmospheric conditions. Nd(III) and Sm(III) were selected as analogues for trivalent lanthanide and actinide ions. The solid phases under investigation have been prepared by alkaline precipitation and characterized by TGA, ATR-FTIR, XRD, TRLFS, DR-UV-Vis and Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicate that Nd(OH)CO3 and Sm(OH)CO3 are stable and remain the solubility limiting solid phases even in the presence of increased HA concentration (0.5 g/L) in solution. Upon base addition in the Ln(III)-HA system decomplexation of the previously formed Ln(III)-humate complexes and precipitation of two distinct phases occurs, the inorganic (Ln(OH)CO3) and the organic phase (HA), which is adsorbed on the particle surface of the former. Nevertheless, HA affects the particle size of the solid phases. Increasing HA concentration results in decreasing crystallite size of the Nd(OH)CO3 and increasing crystallite size of the Sm(OH)CO3 solid phase, and affects inversely the solubility of the solid phases. However, this impact on the solid phase properties is expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere. KW - Lanthanide ions KW - Humic acid KW - Solid phase KW - Solubility KW - Raman KW - TRLFS KW - DR-UV-Vis Y1 - 2011 U6 - https://doi.org/10.1524/ract.2011.1812 SN - 0033-8230 VL - 99 IS - 4 SP - 217 EP - 223 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Antoniou, Stella A1 - Pashalidis, Ioannis A1 - Gessner, Andre A1 - Kumke, Michael Uwe T1 - Spectroscopic investigations on the effect of humic acid on the formation and solubility of secondary solid phases of Ln(2)(CO3)(3) JF - Journal of rare earths N2 - The formation of secondary Ln(III) solid phases (e.g., Nd-2(CO3)(3) and Sm-2(CO3)(3)) was studied as a function of the humic acid concentration in 0.1 mol/L NaClO4 aqueous solution in the neutral pH range (5-6.5). The solid phases under investigation were prepared by alkaline precipitation under 100% CO2 atmosphere and characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), time-resolved laser fluorescence spectroscopy (TRLFS), diffuse reflectance ultraviolet-visible (DR-UV-Vis), Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicated that Nd-2(CO3)(3) and Sm-2(CO3)(3) were stable and remained the solubility limiting solid phases even in the presence of increased humic acid concentration (0.5 g/L) in solution. Upon base addition in the Ln(III)-HA system, decomplexation of the previously formed Ln(III)-humate complexes and precipitation of two distinct phases occurred, the inorganic (Ln(2)(CO3)(3)) and the organic phase (HA), which was adsorbed on the particle surface of the former. Nevertheless, humic acid affected the particle size of the solid phases. Increasing humic acid concentration resulted in decreasing crystallite size of the Nd-2(CO3)(3) and increasing crystallite size of the Sm-2(CO3)(3) solid phase, and affected inversely the solubility of the solid phases. However, this impact on the solid phase properties was expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere. KW - lanthanide ions KW - humic acid KW - solid phase KW - solubility KW - Raman KW - TRLFS KW - DR-UV-Vis KW - rare earths Y1 - 2011 U6 - https://doi.org/10.1016/S1002-0721(10)60490-5 SN - 1002-0721 VL - 29 IS - 6 SP - 516 EP - 521 PB - Elsevier CY - Amsterdam ER -