TY - JOUR A1 - Gräff, Thomas A1 - Zehe, Erwin A1 - Schläger, Stefan A1 - Morgner, Markus A1 - Bauer, Andreas A1 - Becker, Rolf A1 - Creutzfeldt, Benjamin A1 - Bronstert, Axel T1 - A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments N2 - Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogonous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16% were in good agreement with independent measurements. Y1 - 2010 UR - http://www.hydrol-earth-syst-sci-discuss.net/volumes_and_issues.html U6 - https://doi.org/10.5194/hessd-7-269-2010 SN - 1812-2108 ER - TY - JOUR A1 - Gräff, Thomas A1 - Zehe, Erwin A1 - Schlaeger, Stefan A1 - Morgner, Markus A1 - Bauer, Andreas A1 - Becker, Rolf A1 - Creutzfeldt, Benjamin A1 - Bronstert, Axel T1 - A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments N2 - Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16% were in good agreement with independent measurements. Y1 - 2010 UR - http://www.copernicus.org/EGU/hess/hess.html U6 - https://doi.org/10.5194/hess-14-1007-2010 SN - 1027-5606 ER - TY - JOUR A1 - Jackisch, Conrad A1 - Zehe, Erwin A1 - Samaniego, Luis A1 - Singh, Anupam K. T1 - An experiment to gauge an ungauged catchment: rapid data assessment and eco-hydrological modelling in a data-scarce rural catchment JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - We conducted a PUB (predictions in ungauged basins) experiment looking at hydrology and crop dynamics in the semi-arid rural Mod catchment in India. The experiment was motivated by the aims (a) to develop a coupled eco-hydrological model capable of analysing land-use strategies concerning crop water need, erosion protection, crop yield and resistivity against droughts and floods, and (b) to assess the feasibility of a strategy for collecting the necessary data in a data-scarce region. Our experiment combines parsimonious data assessment and eco-hydrological model coupling at the lower mesoscale. Linking bottom-up sampling of functionally representative soil classes and top-down regionalization based on spectral properties of the same resulted in a comprehensive distributed data basis for the model. A clear focus on the dominating processes and the catena as the organizing landscape element in the given environmental setting enabled this. We employed the WASA (Water Availability in Semi-Arid environments) model for uncalibrated process-based water balance modelling and integrated a crop simulation subroutine based on the SWAP (Soil Water Atmosphere Plant) model to account for crop dynamics, feedbacks and yield estimation. While we found the data assessment strategy and the hydrological model application largely feasible, in terms of its accounting for scale, processes and model concepts, the simulation of feedbacks with crops was problematic. Contributing to the PUB issue, more general conclusions are drawn concerning spatially-distributed structural information and uncalibrated modelling. [GRAPHICS] Editor Z.W. Kundzewicz; Associate editor F. Hattermann KW - rural KW - model coupling KW - eco-hydrological modelling KW - semi-arid KW - Prediction in Ungauged Basins (PUB) Y1 - 2014 U6 - https://doi.org/10.1080/02626667.2013.870662 SN - 0262-6667 SN - 2150-3435 VL - 59 IS - 12 SP - 2103 EP - 2125 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Köhler, Birgit A1 - Zehe, Erwin A1 - Corre, Marife D. A1 - Veldkamp, Edzo T1 - An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils N2 - Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2) production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D) calculated based on relationships with soil porosity and moisture ("physically modeled" D). Our objective was to investigate whether these inconsistencies were related to (1) the applied interpolation and solution methods and/or (2) uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn) mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2 exchange fluxes across water-filled pores causes the soil-CO2 profile method to fail. These fluxes are driven by the different diffusivities in inter- vs. intra-aggregate pores which create permanent CO2 gradients if separated by a "diffusive water barrier". These results corroborate other studies which have shown that the theory to treat gas diffusion as homogeneous process, a precondition for use of the soil-CO2 profile method, is inaccurate for pore networks which exhibit spatial separation between CO2 production and diffusion out of the soil. Y1 - 2010 UR - http://www.copernicus.org/EGU/bg/bg.html U6 - https://doi.org/10.5194/bg-7-2311-2010 SN - 1726-4170 ER - TY - JOUR A1 - Zimmermann, Beate A1 - Zehe, Erwin A1 - Hartmann, N. K. A1 - Elsenbeer, Helmut T1 - Analyzing spatial data : an assessment of assumptions, new methods, and uncertainty using soil hydraulic data Y1 - 2008 SN - 0043-1397 ER - TY - JOUR A1 - Wienhöfer, Jan A1 - Lindenmaier, Falk A1 - Zehe, Erwin T1 - Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides JF - Vadose zone journal N2 - Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models. Y1 - 2011 U6 - https://doi.org/10.2136/vzj2009.0182 SN - 1539-1663 VL - 10 IS - 2 SP - 496 EP - 511 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Wienhöfer, Jan A1 - Lindenmaier, Falk A1 - Ihringer, Jürgen A1 - Zehe, Erwin T1 - Characterization of soil hydraulic properties on a creeping Alpine slope Y1 - 2009 SN - 978-1-901502-89-3 ER - TY - JOUR A1 - Klaus, Julian A1 - Zehe, Erwin A1 - Elsner, Martin A1 - Palm, Juliane A1 - Schneider, Dorothee A1 - Schroeder, Boris A1 - Steinbeiss, Sibylle A1 - van Schaik, Loes A1 - West, Stephanie T1 - Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments JF - Journal of hydrology N2 - Tile drains strongly influence the water cycle in agricultural catchment in terms of water quantity and quality. The connectivity of preferential flow to tile drains can create shortcuts for rapid transport of solutes into surface waters. The leaching of pesticides can be linked to a set of main factors including, rainfall characteristics, soil moisture, chemical properties of the pesticides, soil properties, and preferential flow paths. The connectivity of the macropore system to the tile drain is crucial for pesticide leaching. Concurring influences of the main factors, threshold responses and the role of flow paths are still poorly understood. The objective of this study is to investigate these influences by a replica series of three irrigation experiments on a tile drain field site using natural and artificial tracers together with applied pesticides. We found a clear threshold behavior in the initialization of pesticide transport that was different between the replica experiments. Pre-event soil water contributed significantly to the tile drain flow, and creates a flow path for stored pesticides from the soil matrix to the tile drain. This threshold is controlled by antecedent soil moisture and precipitation characteristics, and the interaction between the soil matrix and preferential flow system. Fast transport of pesticides without retardation and the remobilization could be attributed to this threshold and the interaction between the soil matrix and the preferential flow system. Thus, understanding of the detailed preferential flow processes clearly enhances the understanding of pesticide leaching on event and long term scale, and can further improve risk assessment and modeling approaches. (C) 2014 Elsevier B.V. All rights reserved. KW - Irrigation experiment KW - Preferential flow KW - Threshold KW - Pesticide transport Y1 - 2014 U6 - https://doi.org/10.1016/j.jhydrol.2014.03.020 SN - 0022-1694 SN - 1879-2707 VL - 512 SP - 528 EP - 539 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bolduan, Rainer A1 - Zehe, Erwin T1 - Degradation of isoproturon in earthworm macropores and subsoil matrix : a field study N2 - The objective is to compare the time scale of microbial degradation of the herbicide Isoproturon at the end of earthworm burrows with the time scale of microbial degradation in the surrounding soil matrix. To this end, we developed a method which allows the observation of microbial degradation on Isoproturon in macropores under field conditions. Study area was the well-investigated Weiherbach catchment (Kraichgau, SW Germany). The topsoil of a 12 m(2) large plot parcel was removed, the parcel was covered with a tent and instrumented with TDR and temperature sensors at two depths. After preliminary investigations to optimize application and sampling techniques, the bottom of 55 earthworm burrows, located at a depth of 80-100cm, was inoculated with Isoproturon. Within an interval of 8 d, soil material from the bottom of 5-6 earthworm burrows was taken into the laboratory and analyzed for the Isoproturon concentration for investigation of the degradation kinetics. Furthermore, the degradation of Isoproturon in the soil matrix, that surrounded the macropores at the field plot, was observed in the laboratory. Microbial degradation of Isoproturon at the bottom of the earthworm burrows was with a DT-50-value of 15.6 d almost as fast as in the topsoil. In the soil matrix that closely surrounded the center of the earthworm burrows, no measurable degradation was observed within 30 d. The clearly slower degradation in the soil matrix may be likely explained by a lower microbial activity that was observed in the surrounding soil matrix. The results give evidence that deterministic modeling of the fate of pesticides once transported into heterogeneous subsoils by preferential flow requires an accuracy of a few centimeters in terms of predicting spatial locations: time scales of microbial degradation in the subsoil drop almost one order of magnitude, in case the herbicides dislocates from the bottom of an earthworm burrow a few centimeter into the surrounding soil matrix. If at all, predictions of such an accuracy can only be achieved at locations at sites where the soil hydraulic properties and the macropore system are known at a very high spatial resolution Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10008342 U6 - https://doi.org/10.1002/jpin.200521754 SN - 1436-8730 ER - TY - JOUR A1 - Tietjen, Britta A1 - Jeltsch, Florian A1 - Zehe, Erwin A1 - Classen, Nikolaus A1 - Groengroeft, Alexander A1 - Schiffers, Katja A1 - Oldeland, Jens T1 - Effects of climate change on the coupled dynamics of water and vegetation in drylands N2 - Drylands worldwide are exposed to a highly variable environment and face a high risk of degradation. The effects of global climate change such as altered precipitation patterns and increased temperature leading to reduced water availability will likely increase this risk. At the same time, an elevated atmospheric CO2 level could mitigate the effects of reduced water availability by increasing the water use efficiency of plants. To prevent degradation of drylands, it is essential to understand the underlying processes that affect water availability and vegetation cover. Since water and vegetation are strongly interdependent in water-limited ecosystems, changes can lead to highly non- linear effects. We assess these effects by developing an ecohydrological model of soil moisture and vegetation cover. The water component of the model simulates the daily dynamics of surface water and water contents in two soil layers. Vegetation is represented by two functional types: shrubs and grasses. These compete for soil water and strongly influence hydrological processes. We apply the model to a Namibian thornbush savanna and evaluate the separate and combined effects of decreased annual precipitation, increased temperature, more variable precipitation and elevated atmospheric CO2 on soil moisture and on vegetation cover. The results show that two main factors control the response of plant types towards climate change, namely a change in water availability and a change in water allocation to a specific plant type. Especially, reduced competitiveness of grasses can lead to a higher risk of shrub encroachment in these systems. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/114209870/home U6 - https://doi.org/10.1002/Eco.70 SN - 1936-0584 ER -