TY - JOUR A1 - Shilon, I. A1 - Kraus, M. A1 - Büchele, M. A1 - Egberts, Kathrin A1 - Fischer, Tobias A1 - Holch, Tim Lukas A1 - Lohse, T. A1 - Schwanke, U. A1 - Steppa, Constantin Beverly A1 - Funk, Stefan T1 - Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data JF - Astroparticle physics N2 - Ground based gamma-ray observations with Imaging Atmospheric Cherenkov Telescopes (IACTs) play a significant role in the discovery of very high energy (E > 100 GeV) gamma-ray emitters. The analysis of IACT data demands a highly efficient background rejection technique, as well as methods to accurately determine the position of its source in the sky and the energy of the recorded gamma-ray. We present results for background rejection and signal direction reconstruction from first studies of a novel data analysis scheme for IACT measurements. The new analysis is based on a set of Convolutional Neural Networks (CNNs) applied to images from the four H.E.S.S. phase-I telescopes. As the H.E.S.S. cameras pixels are arranged in a hexagonal array, we demonstrate two ways to use such image data to train CNNs: by resampling the images to a square grid and by applying modified convolution kernels that conserve the hexagonal grid properties. The networks were trained on sets of Monte-Carlo simulated events and tested on both simulations and measured data from the H.E.S.S. array. A comparison between the CNN analysis to current state-of-the-art algorithms reveals a clear improvement in background rejection performance. When applied to H.E.S.S. observation data, the CNN direction reconstruction performs at a similar level as traditional methods. These results serve as a proof-of-concept for the application of CNNs to the analysis of events recorded by IACTs. (C) 2018 Published by Elsevier B.V. KW - Gamma-ray astronomy KW - IACT KW - Analysis technique KW - Deep learning KW - Convolutional neural networks KW - Recurrent neural networks Y1 - 2018 U6 - https://doi.org/10.1016/j.astropartphys.2018.10.003 SN - 0927-6505 SN - 1873-2852 VL - 105 SP - 44 EP - 53 PB - Elsevier CY - Amsterdam ER -