TY - JOUR A1 - Ramiaramanantsoa, Tahina A1 - Moffat, Anthony F. J. A1 - Harmon, Robert A1 - Ignace, R. A1 - St-Louis, Nicole A1 - Vanbeveren, Dany A1 - Shenar, Tomer A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Howarth, Ian D. A1 - Stevens, Ian R. A1 - Piaulet, Caroline A1 - St-Jean, Lucas A1 - Eversberg, Thomas A1 - Pigulski, Andrzej A1 - Popowicz, Adam A1 - Kuschnig, Rainer A1 - Zoclonska, Elzbieta A1 - Buysschaert, Bram A1 - Handler, Gerald A1 - Weiss, Werner W. A1 - Wade, Gregg A. A1 - Rucinski, Slavek M. A1 - Zwintz, Konstanze A1 - Luckas, Paul A1 - Heathcote, Bernard A1 - Cacella, Paulo A1 - Powles, Jonathan A1 - Locke, Malcolm A1 - Bohlsen, Terry A1 - Chené, André-Nicolas A1 - Miszalski, Brent A1 - Waldron, Wayne L. A1 - Kotze, Marissa M. A1 - Kotze, Enrico J. A1 - Böhm, Torsten T1 - BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures JF - Monthly notices of the Royal Astronomical Society N2 - From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability. KW - techniques: photometric KW - techniques: spectroscopic KW - stars: massive KW - stars: rotation KW - starspots KW - supergiants KW - stars: winds, outflows Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx2671 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5532 EP - 5569 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kurfürst, P. A1 - Feldmeier, Achim A1 - Krticka, Jiri T1 - Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example. KW - stars: massive KW - stars: mass-loss KW - stars: winds, outflows KW - stars: evolution KW - stars: rotation KW - hydrodynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731300 SN - 1432-0746 VL - 613 PB - EDP Sciences CY - Les Ulis ER -