TY - JOUR A1 - Cappel, Ute B. A1 - Svanstrom, Sebastian A1 - Lanzilotto, Valeria A1 - Johansson, Fredrik O. L. A1 - Aitola, Kerttu A1 - Philippe, Bertrand A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Leitner, Torsten A1 - Föhlisch, Alexander A1 - Svensson, Svante A1 - Martensson, Nils A1 - Boschloo, Gerrit A1 - Lindblad, Andreas A1 - Rensmo, Hakan T1 - Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells JF - ACS applied materials & interfaces N2 - Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAP-bI(3))(0.85)(MAPbBr(3))(0.15)) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites. KW - photoelectron spectroscopy KW - laser illumination KW - lead halide perovskite KW - ion migration KW - phase separation KW - stability Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b10643 SN - 1944-8244 VL - 9 SP - 34970 EP - 34978 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Xiong, Tao T1 - Vibrationally resolved absorption, emission, resonance Raman and photoelectron spectra of selected organic molecules, associated radicals and cations T1 - Schwingungsaufgelöste Absorptions-, Emissions-, Resonanz-Raman- und Photoelektronenspektren ausgewählter organischer Moleküle, assoziierter Radikale und Kationen BT - a time-dependent approach BT - ein zeitabhängiger Ansatz N2 - Time-dependent correlation function based methods to study optical spectroscopy involving electronic transitions can be traced back to the work of Heller and coworkers. This intuitive methodology can be expected to be computationally efficient and is applied in the current work to study the vibronic absorption, emission, and resonance Raman spectra of selected organic molecules. Besides, the "non-standard" application of this approach to photoionization processes is also explored. The application section consists of four chapters as described below. In Chapter 4, the molar absorptivities and vibronic absorption/emission spectra of perylene and several of its N-substituted derivatives are investigated. By systematically varying the number and position of N atoms, it is shown that the presence of nitrogen heteroatoms has a negligible effect on the molecular structure and geometric distortions upon electronic transitions, while spectral properties are more sensitive: In particular the number of N atoms is important while their position is less decisive. Thus, N-substitution can be used to fine-tune the optical properties of perylene-based molecules. In Chapter 5, the same methods are applied to study the vibronic absorption/emission and resonance Raman spectra of a newly synthesized donor-acceptor type molecule. The simulated absorption/emission spectra agree fairly well with experimental data, with discrepancies being attributed to solvent effects. Possible modes which may dominate the fine-structure in the vibronic spectra are proposed by analyzing the correlation function with the aid of Raman and resonance Raman spectra. In the next two chapters, besides the above types of spectra, the methods are extended to study photoelectron spectra of several small diamondoid-related systems (molecules, radicals, and cations). Comparison of the photoelectron spectra with available experimental data suggests that the correlation function based approach can describe ionization processes reasonably well. Some of these systems, cationic species in particular, exhibit somewhat peculiar optical behavior, which presents them as possible candidates for functional devices. Correlation function based methods in a more general sense can be very versatile. In fact, besides the above radiative processes, formulas for non-radiative processes such as internal conversion have been derived in literature. Further implementation of the available methods is among our next goals. N2 - Molekülsysteme bestehen aus Kernen und Elektronen, deren viel kleinere Masse sie in die Lage versetzten, sich der Bewegung des ersteren augenblicklich anzupassen. Daher ist die Bewegung der Elektronen und Kerne in einer guten ersten Annäherung "unabhängig", und die Energie der Elektronen kann zuerst berechnet werden, vorausgesetzt, die Kerne sind stationär. Die so gewonnene elektronische Energie wird zur Abstoßungsenergie zwischen den Kernen addiert, um ein Potential zu erhalten, das die Bewegung der Kerne bestimmt. Quantenmechanisch können sowohl die Elektronen als auch die Kerne nur bestimmte Energieniveaus haben. Die molekulare vibronische (= Schwingung + Elektronik) Absorptionsspektroskopie beinhaltet den Übergang der Elektronen und Kerne von ihrem Anfangs- in ihren Endzustand durch Photonenabsorption. Die größere elektronische Übergangsenergie bestimmt die Position des Absorptionsmaximums, während die kleinere nukleare Schwingungsübergangsenergie (ohne Berücksichtigung von Translation und Rotation) die Position der Teilmaxima innerhalb des Absorptionsbereichs bestimmt, wodurch die vibronische Feinstruktur entsteht. Ähnliche Ideen gelten auch für die vibronische Emissionsspektroskopie. Die Resonanz-Raman-Spektroskopie untersucht die Energieänderung des einfallenden Photons (dessen Energie ausreichend ist, um die Elektronen in einen höheren elektronischen Zustand anzuregen), nachdem es mit dem Molekül wechselwirkt. Der Energiegewinn oder -verlust des einfallenden Photons bewirkt eine Änderung des Schwingungszustandes. Die Photoelektronenspektroskopie ist ähnlich wie die vibronische Absorption, benötigt aber in der Regel mehr Energie des einfallenden Photons, da neben der Anregung des Moleküls in einen höheren vibronischen Zustand zusätzliche Energie benötigt wird, um ein Elektron aus dem Molekül zu entfernen. Diese spektroskopischen Techniken liefern wertvolle Informationen über die elektronische und nukleare Bewegung des Moleküls. Theoretisch können wir eine zeitabhängige Korrelationsfunktion verwenden, um die Spektren zu simulieren. Die Korrelationsfunktion für die Absorption ist beispielsweise eine Funktion der Zeit, deren Entwicklung Informationen über die elektronischen Energien und die nukleare Bewegung enthält. Um das Absorptionsspektrum in Form von Energie zu erhalten, wird ein mathematisches Verfahren, die so genannte Fourier-Transformation, auf die zeitabhängige Korrelationsfunktion angewendet, um ein energieabhängiges Spektrum zu erhalten. Diese Methode wird auf ausgewählte organische Moleküle, darunter einige Radikale und Kationen, angewandt, um deren elektronisches und optisches Verhalten unter dem Einfluss von einfallendem Licht zu untersuchen und Einblicke in das Design neuer optoelektronischer Bauelemente zu gewinnen. Bei einigen Molekülen/Systemen wird die vibronische Feinstruktur durch Faktoren wie molekulare Zusammensetzung und Umgebung wie Lösungsmittel beeinflusst, was darauf hindeutet, dass diese Systeme zur Feinabstimmung der gewünschten Eigenschaften verwendet werden können. Für andere Systeme gibt es fast keine sichtbare vibronische Feinstruktur, was bedeutet, dass sich die nukleare Bewegung solcher Systeme im Allgemeinen von derjenigen der vorherigen Kategorie unterscheidet. KW - vibrationally resolved electronic spectroscopy KW - photoelectron spectroscopy KW - resonance Raman spectroscopy KW - correlation function KW - ionization potential KW - time-dependent density functional theory KW - perylene KW - diamondoid KW - Schwingungsaufgelöste UV/VIS-Spektroskopie KW - Photoelektronenspektroskopie KW - Resonanz-Raman-Spektroskopie KW - Korrelationsfunktion KW - Ionisationspotential KW - Zeitabhängige Dichtefunktionaltheorie KW - Perylen KW - Diamondoide Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418105 ER - TY - THES A1 - Born, Artur T1 - Electronic structure, quasi-particle interaction and relaxation in 3d-elements from X-ray spectroscopy N2 - Any physical system can be described on the level of interacting particles, thus it is of fundamental importance to improve the scientific understanding of interacting many-body systems. This thesis experimentally addresses specific quasi-particle interactions, namely interactions be- tween electrons and between electrons and phonons. It describes the consequential effects of those processes on the electronic structure and the core-hole relaxation pathways in 3d metals. Despite the great amount of experimental and theoretical studies of these interactions and their impact on the behavior of solid-state matter, there are still open questions concerning the cor- responding physical, chemical and mechanical properties of solid-state matter. Especially, the study of 3d metals and their compounds is a great experimental challenge, since those exhibit a variety of spectral features originating from many-body effects such as multiplet splitting, shake up/off satellites, vibrationally excited states or more complex effects like superconductivity and ultrafast demagnetization. In X-ray spectroscopy, these effects often produce overlapping fea- tures, complicating the analysis and limiting the understanding. In this thesis, to overcome the limitations set by conventional X-ray spectroscopy, two different experimental approaches were successfully refined, namely Auger electron photoelectron coincidence spectroscopy (APECS) and temperature-dependent X-ray emission spectroscopy (tXES), which enabled the separation of different core-hole relaxation pathways and the isolation of the impact of specific many-body interactions in the experimental spectra. APECS was utilized at the new Coincidence electron spectroscopy for chemical analysis (Co- ESCA) station at BESSY II to study the core-hole decay and electron-correlation effects in single- crystal Ni, Cu and Co. The observation of photoelectrons in coincidence with Auger electrons allows for the separation of the initial and final state effects in the Auger electron spectra. The results show that a Cu LV V Auger spectrum can be represented by broadened atomic multiplets confirming the localized nature of the intermediate core-hole states. In contrast, the Co LV V Auger spectrum is band-like and can be represented by the self-convolution of the valence band. Ni behaves mixed, localized and itinerant. Thus, the Ni Auger spectrum can only be represented by a mixture of atomic multiplet peaks and the self-convoluted valence band. In the case of Ni, the LV V Auger electrons in coincidence with the 6 eV satellite photoelectrons were also stud- ied. Utilizing the core-hole clock method, the lifetime of the localized double-hole intermediate 2 p53d9 states of 1.8 fs could be determined. However, a fraction of these states delocalizes before the Auger decay contributing to the main peak. A similar delocalization was observed for the double-hole states produced by the L2L3M4,5 Coster-Kronig process. Additionally, the influence of surface oxidation on the Ni(111) 3p levels was studied with APECS. The Ni 3p PES spectrum is broad and featureless, due to overlapping many-body effects and gives little chance for exact analysis using conventional photoelectron spectroscopy. Utilizing APECS or precisely the final state selectivity of the method, the spectral width of the 3p levels could be narrowed and their positions and the spin-orbit splitting were determined. Moreover, due to the surface sensitivity of the method, the chemically shifted 3p photoelectron peaks originating from the oxidized surface and the bulk Ni were disentangled. For the study of the atomic electron-phonon spin-flip scattering in 3d metals as a spin-relaxation channel, the tXES method at the SolidFlexRIXS station was developed. The atomic spin-flip scat- tering was studied in single-crystal Ni, Cu, Co and in FeNi alloys, which show considerable dif- ferences in their behavior. The scattering rate in Ni increases with temperature, whereas the rate in Cu and Co remains constant within the measured temperature range up to 1000 K. In FeNi alloys, our results reveal that the spin-flip scattering is restricted by sublattice exchange energies J. The electron-phonon scattering driven spin-flips only appear in the case where the thermal energy ex- ceeds the exchange energy kT > J. This thresholding is an important microscopic process for the description of the sublattice dynamics in alloys, but as shown also relevant for elemental magnetic systems. Overall, the results strongly indicate that the spin-flip probability is correlated with the exchange energy, which might become an important parameter in the ultrafast demagnetization debate. Taken together, the applied experimental approaches allowed to study complex many-body effects in 3d metals. The results show that utilizing APECS enabled the distinction and clear assignment of otherwise overlapping features in AES or PES spectra of Ni, Cu, Co and NiO. This is of fundamental importance for the basic understanding of photoionization and core-hole decay processes but also for the chemical analysis in applied science. The measurement of the atomic electron-phonon spin-flip scattering rate utilizing tXES shows that the electron-phonon spin-flip scattering is a relevant atomic process for the macroscopic demagnetization process. Additionally, a temperature-dependent thresholding mechanism was discovered, which introduces an important dynamic factor into the electron-phonon spin-flip model. KW - X-ray spectroscopy KW - photoelectron spectroscopy KW - Auger electron spectroscop KW - X-ray absorption spectroscopy KW - X-ray emission spectroscopy KW - 3d metals KW - electronic structure KW - quasi-particle interaction Y1 - 2021 ER - TY - JOUR A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Kühn, Danilo A1 - Neppl, Stefan A1 - Ovsyannikov, Ruslan A1 - Sezen, Hikmet A1 - Svensson, Svante A1 - Föhlisch, Alexander T1 - Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide JF - Advanced materials N2 - Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation. KW - catalysis KW - dichalcogenides KW - hydrogen evolution reaction KW - phase transitions KW - photoelectron spectroscopy Y1 - 2021 U6 - https://doi.org/10.1002/adma.202006957 SN - 0935-9648 SN - 1521-4095 VL - 33 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Gühr, Markus T1 - Data analysis procedures for time-resolved x-ray photoelectron spectroscopy at a SASE free-electron-laser JF - Journal of physics : B, Atomic, molecular and optical physics N2 - The random nature of self-amplified spontaneous emission (SASE) is a well-known challenge for x-ray core level spectroscopy at SASE free-electron lasers (FELs). Especially in time-resolved experiments that require a combination of good temporal and spectral resolution the jitter and drifts in the spectral characteristics, relative arrival time as well as power fluctuations can smear out spectral-temporal features. We present a combination of methods for the analysis of time-resolved photoelectron spectra based on power and time corrections as well as self-referencing of a strong photoelectron line. Based on sulfur 2p photoelectron spectra of 2-thiouracil taken at the SASE FEL FLASH2, we show that it is possible to correct for some of the photon energy drift and jitter even when reliable shot-to-shot photon energy data is not available. The quality of pump-probe difference spectra improves as random jumps in energy between delay points reduce significantly. The data analysis allows to identify coherent oscillations of 1 eV shift on the mean photoelectron line of 4 eV width with an error of less than 0.1 eV. KW - free-electron laser KW - photoelectron spectroscopy KW - FLASH Y1 - 2022 U6 - https://doi.org/10.1088/1361-6455/ac3c91 SN - 0953-4075 SN - 1361-6455 VL - 55 IS - 5 PB - IOP Publ. CY - Bristol ER - TY - THES A1 - Mayer, Dennis T1 - Time-resolved x-ray spectroscopy of 2-thiouracil T1 - Zeitaufgelöste Röntgenspektroskopie an 2-Thiouracil N2 - In this thesis, I present my contributions to the field of ultrafast molecular spectroscopy. Using the molecule 2-thiouracil as an example, I use ultrashort x-ray pulses from free- electron lasers to study the relaxation dynamics of gas-phase molecular samples. Taking advantage of the x-ray typical element- and site-selectivity, I investigate the charge flow and geometrical changes in the excited states of 2-thiouracil. In order to understand the photoinduced dynamics of molecules, knowledge about the ground-state structure and the relaxation after photoexcitation is crucial. Therefore, a part of this thesis covers the electronic ground-state spectroscopy of mainly 2-thiouracil to provide the basis for the time-resolved experiments. Many of the previously published studies that focused on the gas-phase time-resolved dynamics of thionated uracils after UV excitation relied on information from solution phase spectroscopy to determine the excitation energies. This is not an optimal strategy as solvents alter the absorption spec- trum and, hence, there is no guarantee that liquid-phase spectra resemble the gas-phase spectra. Therefore, I measured the UV-absorption spectra of all three thionated uracils to provide a gas-phase reference and, in combination with calculations, we determined the excited states involved in the transitions. In contrast to the UV absorption, the literature on the x-ray spectroscopy of thionated uracil is sparse. Thus, we measured static photoelectron, Auger-Meitner and x-ray absorption spectra on the sulfur L edge before or parallel to the time-resolved experiments we performed at FLASH (DESY, Hamburg). In addition, (so far unpublished) measurements were performed at the synchrotron SOLEIL (France) which have been included in this thesis and show the spin-orbit splitting of the S 2p photoline and its satellite which was not observed at the free-electron laser. The relaxation of 2-thiouracil has been studied extensively in recent years with ultrafast visible and ultraviolet methods showing the ultrafast nature of the molecular process after photoexcitation. Ultrafast spectroscopy probing the core-level electrons provides a complementary approach to common optical ultrafast techniques. The method inherits its local sensitivity from the strongly localised core electrons. The core energies and core-valence transitions are strongly affected by local valence charge and geometry changes, and past studies have utilised this sensitivity to investigate the molecular process reflected by the ultrafast dynamics. We have built an apparatus that provides the requirements to perform time-resolved x-ray spectroscopy on molecules in the gas phase. With the apparatus, we performed UV-pump x-ray-probe electron spectroscopy on the S 2p edge of 2-thiouracil using the free-electron laser FLASH2. While the UV triggers the relaxation dynamics, the x-ray probes the single sulfur atom inside the molecule. I implemented photoline self-referencing for the photoelectron spectral analysis. This minimises the spectral jitter of the FEL, which is due to the underlying self-amplified spontaneous emission (SASE) process. With this approach, we were not only able to study dynamical changes in the binding energy of the electrons but also to detect an oscillatory behaviour in the shift of the observed photoline, which we associate with non-adiabatic dynamics involving several electronic states. Moreover, we were able to link the UV-induced shift in binding energy to the local charge flow at the sulfur which is directly connected to the electronic state. Furthermore, the analysis of the Auger-Meitner electrons shows that energy shifts observed at early stages of the photoinduced relaxation are related to the geometry change in the molecule. More specifically, the observed increase in kinetic energy of the Auger-Meitner electrons correlates with a previously predicted C=S bond stretch. N2 - In dieser Arbeit präsentiere ich meine Beiträge zum Gebiet der ultraschnellen Molekülspektroskopie. Am Beispiel des Moleküls 2-Thiouracil verwende ich ultrakurze Röntgenpulse von Freie-Elektronen-Lasern, um die Relaxationsdynamik von Molekülproben in der Gasphase zu untersuchen. Unter Ausnutzung der für Röntgenstrahlung typischen Element- und Ortsselektivität untersuche ich den Ladungsfluss und die geometrischen Veränderungen in den angeregten Zuständen von 2-Thiouracil. Um die photoinduzierte Dynamik von Molekülen zu verstehen, ist das Wissen über die Grundzustandsstruktur und die Relaxation nach Photoanregung entscheidend. Daher befasst sich ein Teil dieser Arbeit mit der elektronischen Grundzustandsspektroskopie von 2-Thiouracil, um die Grundlage für die zeitaufgelösten Experimente zu schaffen. Viele der bisher veröffentlichten Studien, die sich mit der zeitaufgelösten Dynamik von Thiouracilen in der Gasphase nach UV-Anregung befassten, stützten sich zur Bestimmung der Anregungsenergien auf Informationen aus der Spektroskopie in Lösung. Dies ist nicht optimal, da Lösungsmittel das Absorptionsspektrum verändern und es daher keine Garantie dafür gibt, dass die Spektren in Lösung den Spektren der Gasphase ähneln. Daher habe ich die UV-Absorptionsspektren aller drei Thiouracile gemessen, um eine Referenz für die Gasphase zu erhalten, und in Kombination mit Berechnungen die an den Übergängen beteiligten angeregten Zustände bestimmt. Im Gegensatz zur UV-Absorption ist die Literatur zur Röntgenspektroskopie von thioniertem Uracil spärlich. Daher haben wir statische Photoelektronen-, Auger-Meitner- und Röntgenabsorptionsspektren an der Schwefel-L-Kante vor oder parallel zu den zeitaufgelösten Experimenten an FLASH (DESY, Hamburg) gemessen. Darüber hinaus wurden (bisher unveröffentlichte) Messungen am Synchrotron SOLEIL (Frankreich) durchgeführt, die in diese Arbeit eingeflossen sind und die Spin-Orbit-Aufspaltung der S 2p-Photolinie und ihres Satelliten zeigen, die am Freie-Elektronen-Laser nicht beobachtet wurde. Die Relaxation von 2-Thiouracil wurde in den letzten Jahren ausgiebig mit ultraschnellen Methoden im sichtbaren und ultravioletten Spektralbereich untersucht, die die ultraschnelle Natur des molekularen Prozesses nach der Photoanregung zeigen. Die ultraschnelle Spektroskopie, bei der die Elektronen des Kernniveaus untersucht werden, bietet einen ergänzenden Ansatz zu den üblichen optischen Techniken. Die Methode erhält ihre lokale Empfindlichkeit durch die stark lokalisierten Kernelektronen. Die Kernenergien und Kern-Valenz-Übergänge werden stark von lokalen Valenzladungs- und Geometrieänderungen beeinflusst, und frühere Studien haben diese Empfindlichkeit genutzt, um den molekularen Prozess zu untersuchen, der sich in der ultraschnellen Dynamik widerspiegelt. Wir haben eine Apparatur gebaut, die die Voraussetzungen für die Durchführung zeitaufgelöster Röntgenspektroskopie an Molekülen in der Gasphase bietet. Mit dieser Apparatur haben wir Anregungs-Abfrage-Elektronenspektroskopie an der S 2p-Kante von 2-Thiouracil an dem Freie-Elektronen-Laser FLASH2 durchgeführt. Zuerst triggert ein UV-Puls die Relaxationsdynamik und anschließend tastet ein Röntgenpuls das einzelne Schwefelatom im Inneren des Moleküls ab. Für die Analyse der Photoelektronenspektren habe ich eine Selbstrefernzierung der Photolinie implementiert, mit deren Hilfe der spektrale Jitter des FEL minimiert werden konnte. Dieser ist auf den zugrunde liegenden Prozess der selbstverstärkten spontanen Emission (SASE) zurückzuführen. Mit diesem Ansatz konnten wir nicht nur dynamische Veränderungen in der Bindungsenergie der Elektronen untersuchen, sondern auch ein oszillierendes Verhalten in der Verschiebung der beobachteten Photolinie feststellen, das wir mit einer nicht-adiabatischen Dynamik in Verbindung bringen, an der mehrere elektronische Zustände beteiligt sind. Außerdem konnten wir die UV-induzierte Verschiebung der Bindungsenergie mit dem lokalen Ladungsfluss am Schwefel in Verbindung bringen, der direkt mit dem elektronischen Zustand verbunden ist. Darüber hinaus zeigt die Analyse der Auger-Meitner-Elektronen, dass die in frühen Stadien der photoinduzierten Relaxation beobachteten Energieverschiebungen mit der Geometrieänderung des Moleküls zusammenhängen. Genauer gesagt korreliert der beobachtete Anstieg der kinetischen Energie der Auger-Meitner-Elektronen mit einer zuvor vorhergesagten Dehnung der C=S-Bindung. KW - thiouracil KW - ultrafast molecular dynamics KW - x-ray spectroscopy KW - Auger-Meitner electron spectroscopy KW - photoelectron spectroscopy KW - free-electron laser KW - FLASH KW - excited-state chemical shift KW - Thiouracil KW - ultraschnelle Moleküldynamik KW - Röntgenspektroskopie KW - Photoelektronenspektroskopie KW - pump-probe spectroscopy KW - Freie-Elektronen-Laser KW - Anregungs-Abfrage-Spektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571636 ER - TY - THES A1 - Lever, Fabiano T1 - Probing the ultrafast dynamics of 2-Thiouracil with soft x-rays T1 - Untersuchung der ultraschnellen Dynamik von 2-Thiouracil mit weicher Röntgenstrahlung N2 - Understanding the changes that follow UV-excitation in thionucleobases is of great importance for the study of light-induced DNA lesions and, in a broader context, for their applications in medicine and biochemistry. Their ultrafast photophysical reactions can alter the chemical structure of DNA - leading to damages to the genetic code - as proven by the increased skin cancer risk observed for patients treated with thiouracil for its immunosuppressant properties. In this thesis, I present four research papers that result from an investigation of the ultrafast dynamics of 2-thiouracil by means of ultrafast x-ray probing combined with electron spectroscopy. A molecular jet in the gas phase is excited with a uv pulse and then ionized with x-ray radiation from a Free Electron Laser. The kinetic energy of the emitted electrons is measured in a magnetic bottle spectrometer. The spectra of the measured photo and Auger electrons are used to derive a picture of the changes in the geometrical and electronic configurations. The results allow us to look at the dynamical processes from a new perspective, thanks to the element- and site- sensitivity of x-rays. The custom-built URSA-PQ apparatus used in the experiment is described. It has been commissioned and used at the FL24 beamline of the FLASH2 FEL, showing an electron kinetic energy resolution of ∆E/E ~ 40 and a pump-probe timing resolution of 190 f s. X-ray only photoelectron and Auger spectra of 2-thiouracil are extracted from the data and used as reference. Photoelectrons following the formation a 2p core hole are identified, as well as resonant and non-resonant Auger electrons. At the L 1 edge, Coster-Kronig decay is observed from the 2s core hole. The UV-induced changes in the 2p photoline allow the study the electronic-state dynamics. With the use of an Excited-State Chemical Shift (ESCS) model, we observe a ultrafast ground-state relaxation within 250 f s. Furthermore, an oscillation with a 250 f s period is observed in the 2p binding energy, showing a coherent population exchange between electronic states. Auger electrons from the 2p core hole are analyzed and used to deduce a ultrafast C −S bond expansion on a sub 100 f s scale. A simple Coulomb-model, coupled to quantum chemical calculations, can be used to infer the geometrical changes in the molecular structure. N2 - Das Verständnis von lichtinduzierten, molekularen Prozessen ist über die Physik hinaus in einem breiten Kondext für Medizin und Biochemie relevant. Die ultraschnellen, photophysikalischen Reaktionen mancher Moleküle können die chemische Struktur von DNA verändern und somit genetischen Code schädigen. So führt zum Beispiel die UV-Anregung von Thionukleobasen zu Läsionen der DNA in den Zellen. Dementsprechend zeigen Patienten ein erhöhtes Hautkrebsrisiko, wenn sie im Rahmen einer immunsuppressiven Therapie mit Thiouracil behandelt werden. In dieser Dissertation stelle ich vier Forschungsarbeiten vor, in denen die ultraschnellen, intramolekularen Dynamiken von 2-Thiouracil mittels ultraschneller Anregungs-Abfrage(Pump-Probe)-Röntgenelektronenspektroskopie untersucht werden. Die relevanten molekularen Dynamiken werden stark durch das Schwefelatom des Thiouracils beeinflusst. Die Element- und Ortsempfindlichkeit der verwendeten Röntgenstrahlung erlauben es, diese Prozesse experimentell zu untersuchen. Dafür werden 2-Thiouracil-Moleküle thermisch in einem Molekularstrahl in die Gasphase freigesetzt. Nachdem die Moleküle mit einem UV-Puls angeregt wurden, erfolgt zeitversetzt die Abfrage mit einem Röntgenpuls, der die Moleküle ionisiert. Die kinetische Energie der emittierten Photo- und Augerelektronen wird mit einem Elektronenspektrometer vom Typ ‘Magnetische Flasche’ gemessen. Die Energiespektren dieser Elektronen werden verwendet, um ein Modell von den UV-lichtinduzierten Veränderungen der geometrischen und elektronischen Konfigurationen der Moleküle zu erhalten. Für diese Experimente wird erstmalig eine speziell angefertigte Apparatur namens URSA-PQ verwendet und beschrieben. Sie wurde an der Beamline FL24 des Freie Elektronenlaser (FEL) FLASH2 in Betrieb genommen und verwendet. Aus den Daten werden reine Röntgenphoto- und Augerelektronenspektren des Schwefelatoms von 2-Thiouracil extrahiert und als Referenz verwendet. Die 2p- Photoelektronen werden identifiziert, ebenso wie resonante und nicht-resonante Augerelektronen, die bei dem Zerfall des 2p-Kernlochs entstehen. Die UV-induzierten Veränderungen der 2p-Photolinie ermöglichen es, die Dynamik des elektronischen Zustands zu untersuchen. Unter Verwendung eines ESCS-Modells (Excited-State Chemical Shift) beobachten wir eine ultraschnelle Grundzustandsrelaxation innerhalb von 250 f s. Auger-Elektronen aus dem Zerfall des 2p-Kernlochs im UV-angeregten 2-Thiouracil werden ebenfalls analysiert. Die Änderung ihrer kinetischen Energie deutet auf eine ultraschnelle C − S-Bindungsexpansion auf einer Skala von unter 100 f s hin. Ein einfaches Coulomb-Modell, gekoppelt mit quantenchemischen Berechnungen, kann die geometrischen Veränderungen in der Molekülstruktur erklären. KW - Quantum KW - x-ray KW - photoelectron spectroscopy KW - thiouracil KW - nucleobases KW - Free Electron Laser KW - ultrafast KW - conical intersection KW - molecular dynamics KW - Freie-Elektronen-Laser KW - Quantum KW - konische Kreuzung KW - Molekulardynamik KW - Nukleobasen KW - Photoelektronenspektroskopie KW - Thiouracil KW - ultraschnell KW - Röntgenspektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555230 ER -