TY - THES A1 - Geßner, André T1 - Neuartige Lanthanoid-dotierte mikro- und mesoporöse Feststoffe : Charakterisierung von Ion-Wirt-Wechselwirkungen, Speziesverteilung und Lumineszenzeigenschaften mittels zeitaufgelöster Lumineszenzspektroskopie T1 - Novel lanthanide doped micro- and mesoporous solids : characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy N2 - Poröse Sol-Gel-Materialien finden in vielen Bereichen Anwendung bzw. sind Gegenstand der aktuellen Forschung. Zu diesen Bereichen zählen sowohl klassische Anwendungen, wie z. B. die Verwendung als Katalysator, Molekularsieb oder Trockenmittel, als auch nichtklassische Anwendungen, wie z. B. der Einsatz als Kontrastmittel in der Magnet-Resonanz-Tomographie oder in Form von dünnen Zeolithfilmen als Isolatoren in Mikrochips. Auch für den Einsatz in der Photonik werden poröse Materialien in Betracht gezogen, wie die Entwicklung des Zeolith-Farbstoff-Lasers zeigt. Mikroporöse Zeolithe können generell über einfache Ionenaustauschreaktionen mit Lanthanoidionen in lumineszente Materialien umgewandelt werden. Neben der Erzeugung eines lumineszenten Materials, dessen Lumineszenzeigenschaften charakterisiert werden müssen, bietet die Nutzung von Lanthanoidionen die Möglichkeit diese Ionen als Sonde zur Charakterisierung der Ion-Wirt-Wechselwirkungen zu funktionalisieren, was z. B. in Bezug auf die Anwendung als Katalysator von großer Bedeutung ist. Dabei werden die einzigartigen Lumineszenzeigenschaften der Lanthanoidionen, in diesem Fall von Europium(III) und Terbium(III), genutzt. In dieser Arbeit wurden Lanthanoid-dotierte mikroporöse Zeolithe, mikroporös-mesoporöse Hybridmaterialien und mesoporöse Silikate hinsichtlich ihrer Lumineszenzeigenschaften und ihrer Wechselwirkung des Wirtsmaterials mit den Lanthanoidionen mittels zeitaufgelöster Lumineszenzspektroskopie untersucht. Zeitaufgelöste Emissionsspektren (TRES) liefern dabei sowohl Informationen in der Wellenlängen- als auch in der Zeitdomäne. Erstmalig wurden die TRES mittels einer umfangreichen Auswertemethodik behandelt. Neben der Anpassung des Abklingverhaltens mit einer diskreten Zahl von Exponentialfunktionen, wurden unterstützend auch Abklingzeitverteilungsanalysen durchgeführt. Zeitaufgelöste flächennormierte Emissionsspektren (TRANES), eine Erweiterung der normalen TRES, konnten erstmals zur Bestimmung der Zahl der emittierenden Lanthanoidspezies in porösen Materialien genutzt werden. Durch die Berechnung der Decayassoziierten Spektren (DAS) konnten den Lanthanoidspezies die entsprechenden Lumineszenzspektren zugeordnet werden. Zusätzlich konnte, speziell im Fall der Europium-Lumineszenz, durch Kombination von zeitlicher und spektraler Information das zeitabhängige Asymmetrieverhältnis R und die spektrale Evolution des 5D0-7F0-Übergangs mit der Zeit t untersucht und somit wesentliche Informationen über die Verteilung der Europiumionen im Wirtsmaterial erhalten werden. Über die Abklingzeit und das Asymmetrieverhältnis R konnten Rückschlüsse auf die Zahl der OH-Oszillatoren in der ersten Koordinationssphäre und die Symmetrie der Koordinationsumgebung gezogen werden. Für die mikroporösen und mikroporös-mesoporösen Materialien wurden verschiedene Lanthanoidspezies, im Regelfall zwei, gefunden, welche entsprechend der beschriebenen Methoden charakterisiert wurden. Diese Lanthanoidspezies konnten Positionen in den Materialien zugeordnet werden, die sich im tief Inneren des Porensystems oder auf bzw. nahe der äußeren Oberfläche oder in den Mesoporen befinden. Erstere Spezies ist aufgrund ihrer Position im Material gut vor Feuchtigkeitseinflüssen geschützt, was sich deutlich in entsprechend langen Lumineszenzabklingzeiten äußert. Zusätzlich ist diese Europiumspezies durch unsymmetrische Koordinationsumgebung charakterisiert, was auf einen signifikanten Anteil an Koordination der Lanthanoidionen durch die Sauerstoffatome im Wirtsgitter zurückzuführen ist. Ionen, die sich nahe oder auf der äußeren Oberfläche befinden, sind dagegen für Feuchtigkeit zugänglicher, was in kürzeren Lumineszenzabklingzeiten und einer symmetrischeren Koordinationsumgebung resultiert. Der Anteil von Wassermolekülen in der ersten Koordinationssphäre ist hier deutlich größer, als bei den Ionen, die sich tiefer im Porensystem befinden und entspricht in vielen Fällen der Koordinationszahl eines vollständig hydratisierten Lanthanoidions. Auch der Einfluss von Oberflächenmodifikationen auf die Speziesverteilung und das Verhalten der Materialien gegenüber Feuchtigkeit wurde untersucht. Dabei gelang es den Einfluss der Feuchtigkeit auf die Lumineszenzeigenschaften und die Speziesverteilung durch die Oberflächenmodifikation zu verringern und die Lumineszenzeigenschaften teilweise zu konservieren. Im Fall der mesoporösen Silikamonolithe wurde auch eine heterogene Verteilung der Lanthanoidionen im Porensystem gefunden. Hier wechselwirkt ein Teil der Ionen mit der Porenwand, während sich die restlichen Ionen in der wäßrigen Phase innerhalb des Porensystems aufhalten. Das Aufbringen von Oberflächenmodifikationen führte zu einer Wechselwirkung der Ionen mit diesen Oberflächenmodifikationen, was sich in Abhängigkeit von der Oberflächenbeladung in den enstprechenden Lumineszenzeigenschaften niederschlug. N2 - Porous sol-gel materials are suitable for many applications and subject to ongoing research activities. This includes classical applications, e.g. as catalyst, molecular sieve or drying agent, as well as non-classical applications, e.g. as contrast agent in magnetic resonance tomography or in the form of thin zeolite films as isolators in microchips. The interest in porous materials also covers photonic applications as shown by the development of the zeolite-dye-microlaser. Zeolites, which belong to the subfamily of microporous materials, can be converted into luminescent materials using simple ion-exchange procedures. In addition to the creation of a luminescent material, which luminescence properties have to be characterized, the incorporation of lanthanide ions offers the possibility to use these ions as a luminescent probe for the characterization of the ion-host interactions. This is particularly interesting concerning the application of porous materials as catalysts. Therefor, the unique luminescence properties of the lanthanide ions europium(III) and terbium(III) are used. In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigeted regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding “toolbox“ developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5D0-7F0-transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are easily accessible for water and thus show shorter luminescence decay times and a more symmetrical coordination sphere, which is mostly made up by water molecules. Another investigated aspect was the influence of surface modifications on the luminescence behavior of the lanthanide ions inside the material. Here we could show, that surface modifications hydrophobize the material and thus are able to protect the lanthanide ions from water, which is important for the conservation of the luminescence properties. Concerning the mesoporous silicates, again a heterogeneous distribution of the lanthanide ions in the pore system was found. A part of the lanthanide ions interacts with the pore wall, while the other part is located in the aqueous phase inside the pores. Surface modification led to a interaction of the lanthanide ions with the modification. This was reflected in the luminescence properties depending on the structure of the modification and the surface loading. KW - Lanthanoide KW - Lumineszenz KW - Zeolithe KW - TRES KW - TRANES KW - Lanthanides KW - Luminescence KW - Zeolites KW - TRES KW - TRANES Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52371 ER - TY - THES A1 - Reger, Carolin T1 - Dating of alluvial fans from NW Argentina using cosmogenic nuclides and optically stimulated luminescence technique N2 - Alluvial fans are important geomorphic markers and sedimentary archives of tectonic and climatic changes. Hence, basins providing perfect studying conditions can often be found in arid regions due to the low weathering impact and thus well preservation of sedimentary features. Twelve samples for optically/infrared stimulated luminescence (OSL/IRSL) dating and one depth profile for cosmogenic radionuclide dating (10Be) were collected in the Santa Maria Valley in NW Argentina, where the exceptional preservation of several generations of alluvial fans allow exploring the external forcing conditions that led to repeated cycles of incision and aggradation. The results of the OSL/IRSL dating yielded ages ranging between 0.4 ± 0.1 ka and 271.8 ± 24.5 ka. Previous studies next to the study area indicate a depositional age of 1.5-2 Mio years for the oldest generation of alluvial fans, which might still be supported by our ongoing 10Be dating. Due to field observations, sediment provenance, stratigraphic characteristics and the geomorphic pattern of erosion, seven (/eight) generations of alluvial fan deposits were recognized. Comparing my ages with global glaciation cycles as well as linking them to temperature proxies retrieved from a lake on the Altiplano Plateau, a good fit between alluvial fan accumulation phases and global glacial periods (corresponding to cold/wet phases within the central Andes) is observed. This suggests that aggradation occurs during the early stages of glacial periods, while incision is expected at the end of glacial phases. This pattern might be linked to variations in the vegetational cover (controlled by water availability), which will decrease/increase during hot and dry/cold and wet interglacial/glacial phases favoring/limiting sediment production and will increase/decrease during cold and wet/hot and dry glacial/interglacial phases. Even though the eastern Andean margin is showing neotectonic activities and is assumed to be active up to recent times, deformation and seismicity might most probably have played only a minor role in relation to the rather short timescale reflected by the data. N2 - Schwemmfächer stellen wichtige geomorphologische Erkennungszeichen und gute sedimentologische Archive von tektonischen wie auch klimatischen Veränderungen dar. Aus diesem Grund sind Becken mit ausgezeichneten Forschungsbedingungen oft in ariden Gebieten vorzufinden, da die Schwemmfächer auf Grund der geringen Verwitterung in diesen Gebieten meist gut erhalten sind. Im Santa Maria Tal in NW Argentinien wurden zwölf Proben zur Datierung mit Optisch/Infrarot Stimulierter Lumineszenz (OSL/IRSL) genommen sowie ein Tiefenprofil zur Datierung des kosmogenen Radionuklids 10Be erstellt. Die gute Erhaltung mehrerer Generationen von Schwemmfächern in diesem Gebiet gestattet die Untersuchung externer Bedingungen, welche zu wiederholten Zyklen von Akkumulation und Einschneidung der alluvialen Ablagerungen führten. Die Ergebnisse der OSL/IRSL Datierung lieferten Alter zwischen 0.4 ± 0.1 ka und 271.8 ± 24.5 ka. Frühere Veröffentlichungen zu angrenzenden Forschungsgebieten ließen auf ein maximales Alter der ältesten Schwemmfächer-Generation von 1.5-2 Millionen Jahren schließen, was in Zukunft noch durch die laufenden 10Be-Datierungen belegt werden könnte. Sieben (/acht) Generationen von Schwemmfächern konnten, gestützt durch die Altersdatierungen sowie Geländebeobachtungen zu Herkunft der Sedimente, stratigraphische Eigenschaften und Beobachtungen zum geomorphologischen Erosionsmuster des jeweiligen Schwemmfächers, unterschieden werden. Bei dem Vergleich meiner Daten mit globalen glazialen Zyklen sowie einem Temperatur-Proxy aus einem Seebohrkern auf dem Altiplano-Plateau, überschnitten sich die Ablagerungsphasen der Schwemmfächer im Santa Maria Becken mit globalen Kaltzeiten und kalten/feuchten Zyklen innerhalb der Anden. Es besteht die Annahme, dass Ablagerung während dem Übergang von Warm- zu Kaltzeiten bis hin zu glazialen Maxima auftritt, während Phasen der Einschneidung gegen Ende globaler Kaltzeiten zu erwarten sind. Dieses Muster dürfte durch die Varianz an Vegetationsbedeckung, bedingt durch die klimatischen Schwankungen, zu erklären sein, welche wahrscheinlich bei erhöhter Dichte (Kaltzeiten) als Sedimentbarriere an der Grenze der Sediment-Ursprungsregion dient. Trotz der in der Vergangenheit auftretenden, neotektonischen Aktivitäten am östlichen Rand der Anden und der Annahme anhaltender tektonischer Aktivität wird Deformation und seismischen Aktivitäten auf Grund der kurzen Zeitspanne, welche von den Daten umfasst wird, nur eine Nebenrolle im Entstehungsprozess der Schwemmfächer zugeschrieben. T2 - Datierung von Schwemmfächern in NW Argentinien mit Hilfe von kosmogenen Nukliden und Optisch Stimulierter Lumineszenz Technologie KW - fan KW - alluvial KW - argentina KW - OSL KW - cosmogenic KW - nuclides KW - Schwemmfächer KW - Argentinien KW - kosmogen KW - Nuklide KW - Lumineszenz Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471470 ER - TY - THES A1 - Haubitz, Toni T1 - Transient absorption spectroscopy T1 - Transienten Absorptionsspektroskopie BT - a versatile tool for investigating excited states in organic and inorganic molecules BT - ein vielseitiges Werkzeug zur Untersuchung angeregter Zustände von organischen und anorganischen Molekülen N2 - The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·−2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone. N2 - Die optischen Eigenschaften von organischen Farbstoffen und optisch aktiven anorganischen Molekülen werden durch ihre chemische Struktur, ihrer chemischer Umgebung, und durch das Verhalten ihrer angeregten Zustände bestimmt. Die klassischen Methoden zur Untersuchung dieser Eigenschaften sind die Absorptions- und Lumineszenzspektroskopie. Obwohl beide Methoden leistungsfähig und einfach anzuwenden sind, stellen die fehlende Zeitauflösung respektive das benötigte Vorhandensein von Lumineszenz in gewissen Anwendungen ein Problem dar. Dies ist der Fall, wenn die zu untersuchenden Moleküle durch Löscheffekte keine Lumineszenz mehr aufweisen oder von vornherein nicht lumineszent sind. Unter diesen Umständen ist die Transientenabsorptionsspektroskopie eine exzellente Alternative. Dieses laserspektroskopische Anregungs-Abfrage-Verfahren ist für mechanistische Untersuchungen von Lumineszenz-Löschphänomenen und Photoreaktionen sehr gut geeignet. Aufgrund seiner extrem hohen Zeitauflösung im Femto- und Picosekundenbereich können Intermediate und transiente Spezies identifiziert und deren kinetische Entwicklung beobachtet werden. Da es sich außerdem eine aktive Abfrage des Probenzustands handelt, entfällt die Notwendigkeit von lumineszenten Probeneigenschaften. In dieser Arbeit konnten mittels Transientenabsorptionsspektroskopie die Lumineszenz-Löschmechanismen der organischen Farbstoffklassen O4-DBD, S4-DBD, und der Pyridylanthracene aufgeklärt werden. Bei all diesen Farbstoffen konnte die Bildung von Triplettzuständen als kompetitiver Mechanismus zur Lumineszenz identifiziert werden. Während bei den O4-DBD-Farbstoffen diese Verluste eher gering ausfallen, wird die Lumineszenz der S4-DBD-Farbstoffe fast vollständig gelöscht. Eine Triplettbildung konnte ebenfalls bei den Pyridylanthracenen beobachtet werden, sie hat jedoch einen eher moderaten Anteil am Löschverhalten der Lumineszenz. Der Hauptteil der Lumineszenz-Löschung der protonierten Pyridylanthracene wird eher durch zusätzliche nicht-strahlende Desaktivierungsprozesse über die Pyridylringe verursacht. Es konnte gezeigt werden, dass die Transientenabsorptionsspektroskopie für die Untersuchung des Löschverhaltens von Uranyl(VI)-Lumineszenz durch Chlorid und Bromid geeignet ist. Es wurde geschlussfolgert, dass die Reduktion der Halogenide durch angeregtes Uranyl(VI) zur Bildung von Dihalogenidradikalen X^(·−2). führt. Diese Redoxreaktion im angeregten Zustand wurde daher als Lumineszenz-Löschmechanismus für beide Halogenide identifiziert. Dieser diffusionslimitierte Mechanismus wird unter cryogenen Bedingungen oder in schwächeren dielektriktrischen Lösemitteln wie ACN oder Aceton unterdrückt. KW - spectroscopy KW - luminescence KW - dye KW - quenching KW - uranyl KW - DBD KW - transient KW - Spektroskopie KW - Lumineszenz KW - Farbstoff KW - Löschung KW - Uranyl KW - DBD KW - Transient Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535092 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER -